Vers des animaux ‘sentinelles' : le suivi continu et à long-terme du comportement animal par biologging est-il crédible ? // Towards ‘sentinel animals': is the continuous and long-term biologging of animal behaviour credible?
ABG-131589
ADUM-65427 |
Thesis topic | |
2025-04-30 |
Université de Montpellier
Montpellier cedex 5 - Occitanie - France
Vers des animaux ‘sentinelles' : le suivi continu et à long-terme du comportement animal par biologging est-il crédible ? // Towards ‘sentinel animals': is the continuous and long-term biologging of animal behaviour credible?
- Computer science
Informatique, Systèmes Embarqués, Machine Learning, Biologging, Efficacité Energétique
Computer Science, Embedded Systems, Machine Learning, Biologging, Energy Efficiency
Computer Science, Embedded Systems, Machine Learning, Biologging, Energy Efficiency
Topic description
Cette thèse aura pour objectif de développer des capteurs communicants ‘intelligents' qui permettront d'étudier à distance le comportement des animaux, sur le long-terme. Ces nouveaux outils faciliteront les études en écologie, et permettront de développer des programmes d'animaux ‘sentinelles' de leur environnement. Ce faisant, cette thèse doit relever le défi du traitement embarqué des données, allant jusqu'à l'intelligence artificielle embarquée, sous contrainte forte de consommation énergétique des capteurs. Focalisé sur l'analyse de données d'accélérométrie ‘at the edge', le ou la doctorante devra identifier les approches algorithmiques les plus adaptées, en considérant et caractérisant les éventuels compromis entre performance de classification et consommation énergétique. Ce doctorat a vocation a mener à la production de capteurs effectivement utilisables sur le terrain par les écologues, et se déroulera dans un environnent d'encadrement interdisciplinaire entre électronique, informatique et écologie scientifique.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The aim of this thesis is to develop 'smart' communicating sensors that will enable the long-term study of animal behavior from a distance. These new tools will facilitate studies in ecology, and enable the development of programs in which animals are “sentinels” of their environment. In so doing, this thesis will take up the challenge of on-board data processing, up to and including on-board artificial intelligence, under severe energy consumption constraints. Focusing on the analysis of accelerometer data 'at the edge', the PhD student will identify the most suitable algorithmic approaches, considering and characterizing possible trade-offs between classification performance and energy consumption. This PhD will lead to the production of sensors that can actually be used in the field by ecologists, and will be carried out in an interdisciplinary environment involving electronics, computer science and scientific ecology.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The aim of this thesis is to develop 'smart' communicating sensors that will enable the long-term study of animal behavior from a distance. These new tools will facilitate studies in ecology, and enable the development of programs in which animals are “sentinels” of their environment. In so doing, this thesis will take up the challenge of on-board data processing, up to and including on-board artificial intelligence, under severe energy consumption constraints. Focusing on the analysis of accelerometer data 'at the edge', the PhD student will identify the most suitable algorithmic approaches, considering and characterizing possible trade-offs between classification performance and energy consumption. This PhD will lead to the production of sensors that can actually be used in the field by ecologists, and will be carried out in an interdisciplinary environment involving electronics, computer science and scientific ecology.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Funding category
Funding further details
Financement d'un établissement public Français
Presentation of host institution and host laboratory
Université de Montpellier
Institution awarding doctoral degree
Université de Montpellier
Graduate school
166 I2S - Information, Structures, Systèmes
Candidate's profile
- Expertise en machine learning embarqué
- Bonne maitrise des langages C et Python
- Une expertise en électronique sera considérée favorablement
- Sensibilité pour le sujet d'écologie scientifique traitée dans le programme SENTINEL dans lequel s'inscrit la thèse
- Embbeded Machine Learning - C, Python langages - A basic level in Electronics Design will be appreciated - Considerations regarding Ecological science
- Embbeded Machine Learning - C, Python langages - A basic level in Electronics Design will be appreciated - Considerations regarding Ecological science
2025-08-29
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
Ifremer
MabDesign
Institut Sup'biotech de Paris
MabDesign
Nokia Bell Labs France
CESI
ONERA - The French Aerospace Lab
Groupe AFNOR - Association française de normalisation
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
ANRT
PhDOOC
ADEME
TotalEnergies
SUEZ
Laboratoire National de Métrologie et d'Essais - LNE
Tecknowmetrix
Généthon
CASDEN
Aérocentre, Pôle d'excellence régional
-
JobRef. 131366, LuxembourgLuxembourg Institute of Science and Technology
SD-25237 – ENGINEER IN SMART GRID AUTOMATION
Scientific expertises :Energy - Energy
Experience level :Confirmed
-
JobRef. 131557BREST , Bretagne , FranceIFREMER
Ingénieur en Modélisation H/F
Scientific expertises :Earth, universe, space sciences - Mathematics
Experience level :Confirmed