Analyse de la microsismicité et de la déformation des séquences sismiques de Kumamoto (2016) et Noto (2024). // Microseismicity and deformation analysis of the Kumamoto (2016) and Noto (2024) earthquakes.
ABG-131746
ADUM-65860 |
Thesis topic | |
2025-05-07 | Other public funding |
Université Grenoble Alpes
Grenoble CEDEX 9 - Auvergne-Rhône-Alpes - France
Analyse de la microsismicité et de la déformation des séquences sismiques de Kumamoto (2016) et Noto (2024). // Microseismicity and deformation analysis of the Kumamoto (2016) and Noto (2024) earthquakes.
- Earth, universe, space sciences
Phase pré-sismique, micro-sismicité, crise sismique majeure
Pre-seismic phase, micro-seismicity, major seismic crisis
Pre-seismic phase, micro-seismicity, major seismic crisis
Topic description
La prédiction des séismes reste un défi majeur en raison de la complexité des processus physiques et de l'hétérogénéité de la croûte terrestre. Toutefois, certains grands séismes, comme Tohoku (2011, Mw9.0), Kumamoto (2016, Mw7.0) et Noto (2024, Mw7.7) sont précédés d'une sismicité localisée. Cette thèse se concentre sur les séismes crustaux de Kumamoto (2016) et Noto (2024), tous deux précédés de pré-chocs, mais dont la sensibilité aux perturbations transitoires de contrainte reste peu explorée. Le projet vise à analyser l'évolution de la microsismicité (magnitude < 3) sur le long terme à l'aide des catalogues sismiques japonais sur une durée de 15 à 20 ans. Des données GNSS seront utilisées pour détecter les déformations lentes et corréler la sismicité aux charges saisonnières ou aux marées. Le doctorant utilisera des méthodes de Machine Learning et de 'template matching' pour affiner les catalogues. Les séismes répétitifs seront analysés pour mieux comprendre la déformation locale. L'objectif est de mieux contraindre la phase pré-sismique et d'évaluer l'influence des charges transitoires sur l'activité sismique. Ce travail combinera observations sismologiques et géodésiques pour améliorer notre compréhension de la physique des séismes.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Earthquake prediction remains a major challenge due to the complexity of the underlying physics and the heterogeneous nature of the Earth's crust. However, some large earthquakes—such as Tohoku (2011, Mw9.0), Kumamoto (2016, Mw7.0) and Noto (2024, Mw7.7) —have been preceded by localized seismicity, suggesting the presence of precursory mechanisms. This PhD project focuses on two crustal earthquakes: Kumamoto (2016) and Noto (2024), both of which were preceded by foreshocks, though their sensitivity to transient stress perturbations remains poorly studied. The aim is to analyze long-term microseismicity (magnitude < 3 earthquakes) using Japanese seismic catalogs over 15–20 years. GNSS data will be used to detect slow deformation and explore correlations with seasonal or tidal loading. The candidate will apply Machine Learning and template matching techniques to enhance event detection and lower the magnitude of completeness. Repeating earthquakes will be studied to understand local loading evolution. The goal is to better constrain the pre-seismic phase and evaluate the influence of transient stresses on seismicity. This work will combine seismological and geodetic observations to improve our understanding of earthquake physics.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Earthquake prediction remains a major challenge due to the complexity of the underlying physics and the heterogeneous nature of the Earth's crust. However, some large earthquakes—such as Tohoku (2011, Mw9.0), Kumamoto (2016, Mw7.0) and Noto (2024, Mw7.7) —have been preceded by localized seismicity, suggesting the presence of precursory mechanisms. This PhD project focuses on two crustal earthquakes: Kumamoto (2016) and Noto (2024), both of which were preceded by foreshocks, though their sensitivity to transient stress perturbations remains poorly studied. The aim is to analyze long-term microseismicity (magnitude < 3 earthquakes) using Japanese seismic catalogs over 15–20 years. GNSS data will be used to detect slow deformation and explore correlations with seasonal or tidal loading. The candidate will apply Machine Learning and template matching techniques to enhance event detection and lower the magnitude of completeness. Repeating earthquakes will be studied to understand local loading evolution. The goal is to better constrain the pre-seismic phase and evaluate the influence of transient stresses on seismicity. This work will combine seismological and geodetic observations to improve our understanding of earthquake physics.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Funding category
Other public funding
Funding further details
ANR Financement d'Agences de financement de la recherche
Presentation of host institution and host laboratory
Université Grenoble Alpes
Institution awarding doctoral degree
Université Grenoble Alpes
Graduate school
105 STEP - Sciences de la Terre de l'Environnement et des Planètes
Candidate's profile
Master or engineering degree in Geophysics or Physics.
Disciplinary Profile: Solid skills in mathematics, physics, signal processing, and autonomous in
code developing, especially in Python and Matlab. Able to handle data and cure them.
Extra-disciplinairy profile: Initiative, adaptability, ability to work independently and as part of a
team. Communicative and working skills. Proficiency in English (reading, writing, oral
communication).
Master or engineering degree in Geophysics or Physics. Disciplinary Profile: Solid skills in mathematics, physics, signal processing, and autonomous in code developing, especially in Python and Matlab. Able to handle data and cure them. Extra-disciplinairy profile: Initiative, adaptability, ability to work independently and as part of a team. Communicative and working skills. Proficiency in English (reading, writing, oral communication).
Master or engineering degree in Geophysics or Physics. Disciplinary Profile: Solid skills in mathematics, physics, signal processing, and autonomous in code developing, especially in Python and Matlab. Able to handle data and cure them. Extra-disciplinairy profile: Initiative, adaptability, ability to work independently and as part of a team. Communicative and working skills. Proficiency in English (reading, writing, oral communication).
2025-06-30
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
MabDesign
Aérocentre, Pôle d'excellence régional
Généthon
ANRT
MabDesign
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Laboratoire National de Métrologie et d'Essais - LNE
Nokia Bell Labs France
CESI
Groupe AFNOR - Association française de normalisation
ADEME
Tecknowmetrix
Institut Sup'biotech de Paris
CASDEN
TotalEnergies
PhDOOC
Ifremer
ONERA - The French Aerospace Lab
SUEZ