Généralisation compositionnelle des modèles de langage multimodaux // Compositional Generalization of Visual Language Models
ABG-132006 | Thesis topic | |
2025-05-16 | Public/private mixed funding |
CEA Paris-Saclay Laboratoire Analyse Sémantique Textes et Images
Saclay
Généralisation compositionnelle des modèles de langage multimodaux // Compositional Generalization of Visual Language Models
- Data science (storage, security, measurement, analysis)
Data intelligence dont Intelligence Artificielle / Défis technologiques / Informatique et logiciels / Sciences pour l’ingénieur
Topic description
L’avènement des modèles de fondation a permis d’améliorer les performances dans plusieurs domaines de l’IA, en particulier en vision par ordinateur et traitement du langage naturel. Cependant, malgré l’énorme quantité de données utilisées pour les entrainer, ces modèles sont encore limités dans leur capacité à généraliser, en particulier dans un domaine spécifique, mal représenté sur le Web. Une modélisation de ce problème est la généralisation compositionnelle, c’est-à-dire la capacité d’apprendre à démêler les concepts pendant l’entrainement et à les recombiner dans une composition inédite lors de la phase de production/test. La thèse abordera cette
question, en visant à proposer des représentations visuelles qui permettent aux grands modèles génériques de langage visuel de généraliser la composition dans des domaines spécifiques. Elle étudiera des stratégies visant à réduire l’apprentissage de "raccourcis" artificiels, en favorisant une compréhension plus profonde des structures de composition dans les données multimodales. Elle abordera également le problème de la généralisation de la composition au-delà des simples paires attribut-objet, en saisissant une sémantique plus subtile et plus complexe. La thèse proposée vise des avancées à un niveau assez amont, mais présente de nombreux intérêts pratiques potentiels dans les domaines de la santé, de l’administration et des services, de la sécurité et de la défense, de l’industrie manufacturière et de l’agriculture.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The advent of the foundation models led to increase the state-of-the art performance on a large number of tasks in several fields of AI, in particular computer vision and natural language processing. However, despite the huge amount of data used to train them, these models are still limited in their ability to generalize, in particular for a use case of interest that is in a specific domain, not well represented on the Web. A way to formalize this issue is compositional generalization, i.e. generalising to a new, unseen concept from concepts learned during training. This "generalization" is the ability to learn disentangle concepts and to be able to recombine
them into unseen composition when the model is in production. The proposed thesis will address this issue, aiming at proposing visual representations that enable generic visual language models to generalize compositionally within specific domains. It will investigate strategies to reduce shortcut learning, promoting deeper understanding of compositional structures in multimodal data. It will also address the problem of compositional generalization beyond simple attribute–object pairs, capturing more subtle and complex semantics. The proposed thesis aims at proposing preogress at a quite theoretical level but has many potential practical interest, in the fields of health, administration and services sectors, security and defense, manufacturing and agriculture.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Intelligence Ambiante et Systèmes Interactifs (LIST)
Service : Service Intelligence Artificielle pour le Langage et la Vision
Laboratoire : Laboratoire Analyse Sémantique Textes et Images
Date de début souhaitée : 01-10-2025
Ecole doctorale : Sciences et Technologies de l’Information et de la Communication (STIC)
Directeur de thèse : LE BORGNE Hervé
Organisme : CEA
Laboratoire : DRT/DIASI//LASTI
question, en visant à proposer des représentations visuelles qui permettent aux grands modèles génériques de langage visuel de généraliser la composition dans des domaines spécifiques. Elle étudiera des stratégies visant à réduire l’apprentissage de "raccourcis" artificiels, en favorisant une compréhension plus profonde des structures de composition dans les données multimodales. Elle abordera également le problème de la généralisation de la composition au-delà des simples paires attribut-objet, en saisissant une sémantique plus subtile et plus complexe. La thèse proposée vise des avancées à un niveau assez amont, mais présente de nombreux intérêts pratiques potentiels dans les domaines de la santé, de l’administration et des services, de la sécurité et de la défense, de l’industrie manufacturière et de l’agriculture.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The advent of the foundation models led to increase the state-of-the art performance on a large number of tasks in several fields of AI, in particular computer vision and natural language processing. However, despite the huge amount of data used to train them, these models are still limited in their ability to generalize, in particular for a use case of interest that is in a specific domain, not well represented on the Web. A way to formalize this issue is compositional generalization, i.e. generalising to a new, unseen concept from concepts learned during training. This "generalization" is the ability to learn disentangle concepts and to be able to recombine
them into unseen composition when the model is in production. The proposed thesis will address this issue, aiming at proposing visual representations that enable generic visual language models to generalize compositionally within specific domains. It will investigate strategies to reduce shortcut learning, promoting deeper understanding of compositional structures in multimodal data. It will also address the problem of compositional generalization beyond simple attribute–object pairs, capturing more subtle and complex semantics. The proposed thesis aims at proposing preogress at a quite theoretical level but has many potential practical interest, in the fields of health, administration and services sectors, security and defense, manufacturing and agriculture.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Intelligence Ambiante et Systèmes Interactifs (LIST)
Service : Service Intelligence Artificielle pour le Langage et la Vision
Laboratoire : Laboratoire Analyse Sémantique Textes et Images
Date de début souhaitée : 01-10-2025
Ecole doctorale : Sciences et Technologies de l’Information et de la Communication (STIC)
Directeur de thèse : LE BORGNE Hervé
Organisme : CEA
Laboratoire : DRT/DIASI//LASTI
Funding category
Public/private mixed funding
Funding further details
Presentation of host institution and host laboratory
CEA Paris-Saclay Laboratoire Analyse Sémantique Textes et Images
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Intelligence Ambiante et Systèmes Interactifs (LIST)
Service : Service Intelligence Artificielle pour le Langage et la Vision
Candidate's profile
master ou école d'ingénieur en data science ou math appli
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
ANRT
Institut Sup'biotech de Paris
Tecknowmetrix
Groupe AFNOR - Association française de normalisation
ADEME
MabDesign
SUEZ
PhDOOC
TotalEnergies
ONERA - The French Aerospace Lab
CASDEN
Nokia Bell Labs France
Ifremer
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
CESI
Généthon
MabDesign
Laboratoire National de Métrologie et d'Essais - LNE
Aérocentre, Pôle d'excellence régional