Cobordisme symplectique et lois ternaires formelles // Symplectic cobordism ring and formal ternary laws
ABG-132188
ADUM-66275 |
Thesis topic | |
2025-05-24 |
Université Grenoble Alpes
Grenoble Cedex - Auvergne-Rhône-Alpes - France
Cobordisme symplectique et lois ternaires formelles // Symplectic cobordism ring and formal ternary laws
- Mathematics
Cobordisme, lois ternaires formelles
Symplectic cobordism, Formal ternary laws
Symplectic cobordism, Formal ternary laws
Topic description
Malgré beaucoup d'efforts, le calcul de l'anneau de cobordisme symplectique est toujours incomplet. Le but de ce projet de thèse est de faire quelques progrès dans cette direction, utilisant la notion de loi ternaire formelle (FTL) associée à une théorie (motiviquement) symplectiquement orientée. Ces lois sont d'une grande complexité, mais sont pensées comme un moyen de donner des générateurs de l'anneau de cobordisme symplectique. Il s'agit maintenant de calculer certaines de ses lois, de manière à pouvoir compléter les exemples connus: théories (motiviquement) GL-orientées, groupes de Chow-Witt, cohomologie singulière réelle, etc. Un cas particulièrement intéressant serait de comprendre la loi ternaire formelle associée à MU (le cobordisme complexe), qui devrait être la déformation universelle de la loi ternaire formelle additive.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Although many efforts have been put into its computation, the symplectic cobordism ring remains unknown. The goal of the project is to make some progress towards its computation, using the recently defined notion of formal ternary law associated to a (motivic) sympletically oriented cohomology theory. These laws are of high complexity, but are meant to provide a set of generators for the symplectic cobordism ring. At present, there are few complete computations of these laws: Chow-Witt groups, real singular cohomology, etc. A particularly interesting example would be to understand the formal ternary law associated to the complex cobordism ring MU, which should be the universal deformation of the so-called additive formal ternary law.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Although many efforts have been put into its computation, the symplectic cobordism ring remains unknown. The goal of the project is to make some progress towards its computation, using the recently defined notion of formal ternary law associated to a (motivic) sympletically oriented cohomology theory. These laws are of high complexity, but are meant to provide a set of generators for the symplectic cobordism ring. At present, there are few complete computations of these laws: Chow-Witt groups, real singular cohomology, etc. A particularly interesting example would be to understand the formal ternary law associated to the complex cobordism ring MU, which should be the universal deformation of the so-called additive formal ternary law.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Funding category
Funding further details
Concours allocations
Presentation of host institution and host laboratory
Université Grenoble Alpes
Institution awarding doctoral degree
Université Grenoble Alpes
Graduate school
217 MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Candidate's profile
Une personne avec de bonnes connaissances en topologie algébrique, et notamment la notion de cobordisme et de théories cohomologiques généralisées. Une grande motivation à apprendre de nouvelles notions dans diverses branches des mathématiques.
A person with very good knowledge in algebraic topology, notably cobordism and generalized cohomology theories. A high motivation to learn new notions in various fields of mathematics.
A person with very good knowledge in algebraic topology, notably cobordism and generalized cohomology theories. A high motivation to learn new notions in various fields of mathematics.
2025-06-09
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
CESI
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
PhDOOC
Nokia Bell Labs France
Institut Sup'biotech de Paris
Aérocentre, Pôle d'excellence régional
Ifremer
MabDesign
MabDesign
SUEZ
ANRT
Tecknowmetrix
Généthon
Groupe AFNOR - Association française de normalisation
CASDEN
Laboratoire National de Métrologie et d'Essais - LNE
ADEME
TotalEnergies
ONERA - The French Aerospace Lab