Modulation dynamique de la proximité et de l'activité d'enzymes immobilisées sur une surface élastomère // Dynamic modulation of enzyme proximity and activity immobilized on elastomeric surfaces
ABG-132921
ADUM-66898 |
Thesis topic | |
2025-07-17 | Other public funding |
Institut National des Sciences Appliquées de Toulouse
Toulouse Cedex 4 - Occitanie - France
Modulation dynamique de la proximité et de l'activité d'enzymes immobilisées sur une surface élastomère // Dynamic modulation of enzyme proximity and activity immobilized on elastomeric surfaces
- Ecology, environment
glycoside hydrolase, Immobilisation, AFM, Enzyme synergy, Elastomere, Biomasse lignocellulosique
Glycoside Hydrolase, Immobilization, AFM, Enzyme synergy, Elastomer, Lignocellulosic biomass
Glycoside Hydrolase, Immobilization, AFM, Enzyme synergy, Elastomer, Lignocellulosic biomass
Topic description
Les enzymes, en particulier les glycosides hydrolases, sont essentielles dans la bioéconomie pour valoriser la biomasse lignocellulosique. Certains micro-organismes utilisent des stratégies sophistiquées, comme le cellulosome, un complexe multi-protéique lié à la membrane cellulaire externe des bactéries, qui améliore l'efficacité de la dégradation de la biomasse grâce à la synergie entre les enzymes. Une approche biomimétique est proposée pour étudier l'hypothèse selon laquelle la distance entre les enzymes et leur dynamique pendant l'hydrolyse sont responsables de l'efficacité du cellulosome. Cette approche consiste à immobiliser des enzymes sur une surface élastique, permettant de moduler l'activité enzymatique et les produits libérés par étirement mécanique. Le projet interdisciplinaire réunit cinq partenaires experts en chimie des polymères, enzymologie, caractérisation physico-chimique, étude des cellulosomes et analyse par microscope à force atomique (AFM). Il vise à améliorer la compréhension de la synergie enzymatique pour mieux valoriser la biomasse végétale et apporter des éléments de compréhension dans le domaine de l'immobilisation d'enzymes. La thèse s'inscrit dans un projet collaboratif entre quatre laboratoires : le Toulouse Biotechnology Institute (TBI), le Laboratoire de Chimie des Polymères Organiques (LCPO), le laboratoire Softmat et le Laboratoire de Chimie Bactérienne (LCB). Le doctorant devra produire et purifier des enzymes, réaliser des assemblages multi-enzymatiques sur des surfaces élastomères, et les caractériser par des approches biochimiques, enzymologiques et par AFM. L'originalité du projet réside dans le suivi de réactions enzymatiques sur des surfaces élastomères à différents degrés d'étirement et de densité de greffage, visant à établir un lien entre proximité spatiale, activité et produits d'hydrolyse.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Enzymes, particularly glycoside hydrolases, are essential in the bioeconomy for valorizing lignocellulosic biomass. Some microorganisms use sophisticated strategies, such as the cellulosome, a multi-protein complex linked to the external cell membrane of bacteria, which enhances the efficiency of biomass degradation through enzyme synergy.A biomimetic approach is proposed to study the hypothesis that the distance between enzymes and their dynamics during hydrolysis are responsible for the efficiency of the cellulosome. This approach involves immobilizing enzymes on an elastic surface, allowing the modulation of enzymatic activity and the products released by mechanical stretching.The interdisciplinary project brings together five partners with expertise in polymer chemistry, enzymology, physicochemical characterization, cellulosome studies, and atomic force microscopy (AFM) analysis. It aims to improve the understanding of enzymatic synergy to better valorize plant biomass and provide insights into the field of enzyme immobilization. The thesis is part of a collaborative project among four laboratories: the Toulouse Biotechnology Institute (TBI), the Laboratoire de Chimie des Polymères Organiques (LCPO), the Softmat laboratory, and the Laboratoire de Chimie Bactérienne (LCB). The doctoral student will produce and purify enzymes, create multi-enzymatic assemblies on elastomeric surfaces, and characterize them using biochemical, enzymological, and AFM approaches. The originality of the project lies in monitoring enzymatic reactions on elastomeric surfaces with varying degrees of stretching and grafting density, aiming to establish a link between spatial proximity, activity, and hydrolysis products.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/12/2025
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Enzymes, particularly glycoside hydrolases, are essential in the bioeconomy for valorizing lignocellulosic biomass. Some microorganisms use sophisticated strategies, such as the cellulosome, a multi-protein complex linked to the external cell membrane of bacteria, which enhances the efficiency of biomass degradation through enzyme synergy.A biomimetic approach is proposed to study the hypothesis that the distance between enzymes and their dynamics during hydrolysis are responsible for the efficiency of the cellulosome. This approach involves immobilizing enzymes on an elastic surface, allowing the modulation of enzymatic activity and the products released by mechanical stretching.The interdisciplinary project brings together five partners with expertise in polymer chemistry, enzymology, physicochemical characterization, cellulosome studies, and atomic force microscopy (AFM) analysis. It aims to improve the understanding of enzymatic synergy to better valorize plant biomass and provide insights into the field of enzyme immobilization. The thesis is part of a collaborative project among four laboratories: the Toulouse Biotechnology Institute (TBI), the Laboratoire de Chimie des Polymères Organiques (LCPO), the Softmat laboratory, and the Laboratoire de Chimie Bactérienne (LCB). The doctoral student will produce and purify enzymes, create multi-enzymatic assemblies on elastomeric surfaces, and characterize them using biochemical, enzymological, and AFM approaches. The originality of the project lies in monitoring enzymatic reactions on elastomeric surfaces with varying degrees of stretching and grafting density, aiming to establish a link between spatial proximity, activity, and hydrolysis products.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/12/2025
Funding category
Other public funding
Funding further details
ANR Financement d'Agences de financement de la recherche
Presentation of host institution and host laboratory
Institut National des Sciences Appliquées de Toulouse
Institution awarding doctoral degree
Institut National des Sciences Appliquées de Toulouse
Graduate school
458 SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries
Candidate's profile
Diplômé(e) d'un Master 2 en biochimie, biocatalyse et/ou biologie structurale ou équivalent, le(a) candidat(e) devra posséder de solides compétences en biologie moléculaire, enzymologie et biochimie des protéines. Un intérêt certain pour la structure des protéines et pour l'AFM sera apprécié. La maitrise de l'anglais et des aptitudes au travail collectif et à la communication sont indispensables. Le(a) candidat(e) sera amené à interagir avec un post-doctorant et un ingénieur d'études. Mais bien au-delà de ces compétences, le(a) candidat(e) devra faire montre d'une grande curiosité scientifique et d'une rigueur d'analyse lui permettant de conduire le projet au plus haut niveau.
POur tout renseignement, contactez Cédric Montanier (cedric.montanier@insa-toulouse.fr) et Cécile Formosa-Dague (cecile.formosa@insa-toulouse.fr). Une lettre de motivation, un CV et un relevé des notes de master seront à faire parvenir au plus tot et avant le 30 sept 2025 pour un début de thèse au dernier trimestre 2025.
With a Master's degree in biochemistry, biocatalysis and/or structural biology or equivalent, the candidate should have solid skills in molecular biology, enzymology and protein biochemistry. An interest in protein structure and AFM will be appreciated. Fluent in English and an aptitude for teamwork and communication are essential. The candidate will be required to interact with a post-doc and a research engineer. But above and beyond these skills, the candidate will be expected to demonstrate great scientific curiosity and analytical rigour, enabling him/her to manage the project at the highest level. For more information and/or to submit your application, contact Cédric Montanier (cedric.montanier@insa- toulouse.fr) and Cécile Formosa-Dague (cecile.formosa@insa-toulouse.fr). A cover letter, CV, and master's transcript should be submitted as earlier at possible and no later than Sept 30th, 2025, for a thesis starting in the last trimester of 2025.
With a Master's degree in biochemistry, biocatalysis and/or structural biology or equivalent, the candidate should have solid skills in molecular biology, enzymology and protein biochemistry. An interest in protein structure and AFM will be appreciated. Fluent in English and an aptitude for teamwork and communication are essential. The candidate will be required to interact with a post-doc and a research engineer. But above and beyond these skills, the candidate will be expected to demonstrate great scientific curiosity and analytical rigour, enabling him/her to manage the project at the highest level. For more information and/or to submit your application, contact Cédric Montanier (cedric.montanier@insa- toulouse.fr) and Cécile Formosa-Dague (cecile.formosa@insa-toulouse.fr). A cover letter, CV, and master's transcript should be submitted as earlier at possible and no later than Sept 30th, 2025, for a thesis starting in the last trimester of 2025.
2025-09-30
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
Groupe AFNOR - Association française de normalisation
Institut Sup'biotech de Paris
Tecknowmetrix
ANRT
CASDEN
MabDesign
Nokia Bell Labs France
Ifremer
Aérocentre, Pôle d'excellence régional
CESI
Généthon
MabDesign
SUEZ
PhDOOC
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
ONERA - The French Aerospace Lab
TotalEnergies
ADEME
Laboratoire National de Métrologie et d'Essais - LNE
-
Thesis topicRef. 129173Sophia-Antipolis , Provence-Alpes-Côte d'Azur , FranceMines Paris - PSL, Centre PERSEE
PhD at Mines Paris in AI & Energy: "Decision-Focused Learning Methods for Energy Applications"
Scientific expertises :Engineering sciences - Energy - Mathematics
-
JobRef. 132634Strasbourg , Grand Est , FranceINSERM UMR 1260
Post-doctoral opportunity in Strasbourg (France): Complex Organoids for IBD Immunotherapy
Scientific expertises :Biology - Health, human and veterinary medicine
Experience level :Confirmed