Électrodes positives composites dans les batteries à l’état solide : influence du procédé de fabrication sur les performances électrochimiques // Blended positive electrodes in solid-state batteries: Effect of the electrode fabrication process on electroc
ABG-133856 | Thesis topic | |
2025-10-16 | Public/private mixed funding |
CEA Paris-Saclay Laboratoire d’étude des éléments légers
Saclay
Électrodes positives composites dans les batteries à l’état solide : influence du procédé de fabrication sur les performances électrochimiques // Blended positive electrodes in solid-state batteries: Effect of the electrode fabrication process on electroc
- Chemistry
Chimie physique et électrochimie / Physique de l’état condensé, chimie et nanosciences / Matériaux et applications / Sciences pour l’ingénieur
Topic description
Le développement de batteries tout solide (SSBs) à haute densité énergétique et à faible coût est essentiel pour l’adoption à grande échelle des technologies de stockage d’énergie de nouvelle génération. Parmi les différents candidats pour la cathode, le LiFePO4 (LFP) et le LiFe1??Mn?PO4 (LFMP) offrent des avantages en termes de sécurité et de coût, mais présentent des tensions de fonctionnement faibles et une cinétique limitée comparées aux oxydes lamellaires riches en nickel tels que le LiNi0.85Mn0.05Co0.1O2 (NMC85). Afin d’équilibrer densité énergétique, puissance et stabilité, ce projet de thèse vise à développer des cathodes composites combinant LFMP et NMC85 dans des proportions optimisées pour des configurations tout solide utilisant des électrolytes à base de soufre (Li6PS5Cl). Nous examinerons l’influence des méthodes de fabrication — notamment la préparation des électrodes faites à partir d’encres et l’optimisation du couple liant–solvant — sur les performances électrochimiques et structurales obtenues. Des caractérisations approfondies operando et in situ (XRD, Raman et RMN) seront menées afin d’élucider la diffusion du lithium, les mécanismes de transition de phase et le comportement rédox au sein des systèmes composites. La spectroscopie d’impédance électrochimique (EIS) et des méthodes de titration permettront de quantifier la cinétique du lithium à différents états de charge. En corrélant les conditions de fabrication, la microstructure et le comportement électrochimique, ce projet vise à identifier les compositions de cathodes et les stratégies de fabrication optimales pour des SSBs performantes et industrialisables. Au global, le projet vise à fournir une compréhension complète des relations structure–propriété dans les cathodes composites, ouvrant la voie à des batteries tout solide pratiques offrant une sécurité, une stabilité et une rentabilité accrues.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The development of cost-effective, high-energy-density solid-state batteries (SSBs) is essential for the large-scale adoption of next-generation energy storage technologies. Among various cathode candidates, LiFePO4 (LFP) and LiFe1??Mn?PO4 (LFMP) offer safety and cost advantages but suffer from low working voltages and limited kinetics compared to Ni-rich layered oxides such as LiNi0.85Mn0.05Co0.1O2 (NMC85). To balance energy density, rate capability, and stability, this PhD project aims to develop blended cathodes combining LFMP and NMC85 in optimized ratios for solid-state configurations employing sulfide electrolytes (Li6PS5Cl). We will investigate how fabrication methods- including slurry-based electrode processing and binder-solvent optimization- affect the electrochemical and structural performance. In-depth operando and in situ characterizations (XRD, Raman, and NMR) will be conducted to elucidate lithium diffusion, phase transition mechanisms, and redox behavior within the blended systems. Electrochemical impedance spectroscopy (EIS) and titration methods will quantify lithium kinetics across various states of charge. By correlating processing conditions, microstructure, and electrochemical behavior, this research seeks to identify optimal cathode compositions and manufacturing strategies for scalable, high-performance SSBs. Ultimately, the project aims to deliver a comprehensive understanding of structure–property relationships in blended cathodes, paving the way for practical solid-state battery technologies with enhanced safety, stability, and cost efficiency.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire : Laboratoire d’étude des éléments légers
Date de début souhaitée : 01-10-2026
Ecole doctorale : Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Directeur de thèse : GAUTHIER Magali
Organisme : CEA
Laboratoire : DRF/IRAMIS/NIMBE/LEEL
URL : https://iramis.cea.fr/en/nimbe/leel/pisp/magali-gauthier/
URL : https://iramis.cea.fr/en/nimbe/leel/
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The development of cost-effective, high-energy-density solid-state batteries (SSBs) is essential for the large-scale adoption of next-generation energy storage technologies. Among various cathode candidates, LiFePO4 (LFP) and LiFe1??Mn?PO4 (LFMP) offer safety and cost advantages but suffer from low working voltages and limited kinetics compared to Ni-rich layered oxides such as LiNi0.85Mn0.05Co0.1O2 (NMC85). To balance energy density, rate capability, and stability, this PhD project aims to develop blended cathodes combining LFMP and NMC85 in optimized ratios for solid-state configurations employing sulfide electrolytes (Li6PS5Cl). We will investigate how fabrication methods- including slurry-based electrode processing and binder-solvent optimization- affect the electrochemical and structural performance. In-depth operando and in situ characterizations (XRD, Raman, and NMR) will be conducted to elucidate lithium diffusion, phase transition mechanisms, and redox behavior within the blended systems. Electrochemical impedance spectroscopy (EIS) and titration methods will quantify lithium kinetics across various states of charge. By correlating processing conditions, microstructure, and electrochemical behavior, this research seeks to identify optimal cathode compositions and manufacturing strategies for scalable, high-performance SSBs. Ultimately, the project aims to deliver a comprehensive understanding of structure–property relationships in blended cathodes, paving the way for practical solid-state battery technologies with enhanced safety, stability, and cost efficiency.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire : Laboratoire d’étude des éléments légers
Date de début souhaitée : 01-10-2026
Ecole doctorale : Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Directeur de thèse : GAUTHIER Magali
Organisme : CEA
Laboratoire : DRF/IRAMIS/NIMBE/LEEL
URL : https://iramis.cea.fr/en/nimbe/leel/pisp/magali-gauthier/
URL : https://iramis.cea.fr/en/nimbe/leel/
Funding category
Public/private mixed funding
Funding further details
Presentation of host institution and host laboratory
CEA Paris-Saclay Laboratoire d’étude des éléments légers
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Candidate's profile
M2-Chimie/M2-Energie
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Nokia Bell Labs France
ADEME
Tecknowmetrix
TotalEnergies
PhDOOC
Aérocentre, Pôle d'excellence régional
Généthon
SUEZ
Laboratoire National de Métrologie et d'Essais - LNE
ONERA - The French Aerospace Lab
Institut Sup'biotech de Paris
MabDesign
ANRT
Groupe AFNOR - Association française de normalisation
MabDesign
Ifremer
CASDEN
CESI