Modélisation et caractérisation des transistors CFET pour l’amélioration des performances électriques // Modeling and characterization of CFET transistors for enhanced electrical performance
| ABG-134364 | Thesis topic | |
| 2025-11-14 | Public/private mixed funding |
CEA Université Grenoble Alpes Laboratoire de Simulation et Modélisation
Grenoble
Modélisation et caractérisation des transistors CFET pour l’amélioration des performances électriques // Modeling and characterization of CFET transistors for enhanced electrical performance
- Materials science
Matériaux et procédés émergents pour les nanotechnologies et la microélectronique / Défis technologiques / Mathématiques - Analyse numérique - Simulation / Sciences pour l’ingénieur
Topic description
Les transistors CFET (Complementary Field Effect Transistors) représentent une nouvelle génération de dispositifs CMOS empilés verticalement, offrant un fort potentiel pour poursuivre la miniaturisation des circuits intégrés et répondre aux exigences du calcul haute performance.
L’objectif de cette thèse est d’étudier et d’optimiser la mise en contrainte du canal de conduction afin d’accroître la mobilité des porteurs et d’améliorer les performances électriques des CFET. Le travail portera à la fois sur la modélisation numérique des procédés technologiques, réalisée par éléments finis, et sur la caractérisation expérimentale des déformations cristallines à l’aide de la microscopie électronique en transmission couplée à la diffraction électronique précessionnée (TEM-PED).
La partie modélisation visera à prédire les distributions de contraintes et leur impact sur les propriétés électriques, en intégrant la complexité des empilements technologiques et des étapes critiques du procédé, telles que l’épitaxie. En parallèle, la caractérisation par TEM-PED permettra de mesurer les champs de déformation et de confronter les simulations aux observations expérimentales.
L’ensemble du travail consistera à développer des outils de modélisation et des méthodologies de caractérisation adaptés à ces structures avancées, afin d’améliorer la précision spatiale, la reproductibilité et la compréhension des mécanismes de contrainte au cœur des transistors CFET.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Complementary Field Effect Transistors (CFETs) represent a new generation of vertically stacked CMOS devices, offering a promising path to continue transistor miniaturization and to meet the requirements of high-performance computing.
The objective of this PhD work is to study and optimize the strain engineering of the transistor channel in order to enhance carrier mobility and improve the overall electrical performance of CFET devices. The work will combine numerical modeling of technological processes using finite element methods with experimental characterization of crystalline deformation through transmission electron microscopy coupled with precession electron diffraction (TEM-PED).
The modeling activity will focus on predicting strain distributions and their impact on electrical properties, while accurately accounting for the complexity of the technological stacks and critical fabrication steps such as epitaxy. In parallel, the experimental work will aim to quantify strain fields using TEM-PED and to compare these results with simulation outputs.
This research will contribute to the development of dedicated modeling tools and advanced characterization methodologies adapted to CFET architectures, with the goal of improving spatial resolution, measurement reproducibility, and the overall understanding of strain mechanisms in next-generation transistors.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Composants Silicium (LETI)
Service : Service Caractérisation, Conception et Simulation
Laboratoire : Laboratoire de Simulation et Modélisation
Date de début souhaitée : 01-10-2026
Ecole doctorale : Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Directeur de thèse : BARRAUD Sylvain
Organisme : CEA
Laboratoire : DRT
L’objectif de cette thèse est d’étudier et d’optimiser la mise en contrainte du canal de conduction afin d’accroître la mobilité des porteurs et d’améliorer les performances électriques des CFET. Le travail portera à la fois sur la modélisation numérique des procédés technologiques, réalisée par éléments finis, et sur la caractérisation expérimentale des déformations cristallines à l’aide de la microscopie électronique en transmission couplée à la diffraction électronique précessionnée (TEM-PED).
La partie modélisation visera à prédire les distributions de contraintes et leur impact sur les propriétés électriques, en intégrant la complexité des empilements technologiques et des étapes critiques du procédé, telles que l’épitaxie. En parallèle, la caractérisation par TEM-PED permettra de mesurer les champs de déformation et de confronter les simulations aux observations expérimentales.
L’ensemble du travail consistera à développer des outils de modélisation et des méthodologies de caractérisation adaptés à ces structures avancées, afin d’améliorer la précision spatiale, la reproductibilité et la compréhension des mécanismes de contrainte au cœur des transistors CFET.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Complementary Field Effect Transistors (CFETs) represent a new generation of vertically stacked CMOS devices, offering a promising path to continue transistor miniaturization and to meet the requirements of high-performance computing.
The objective of this PhD work is to study and optimize the strain engineering of the transistor channel in order to enhance carrier mobility and improve the overall electrical performance of CFET devices. The work will combine numerical modeling of technological processes using finite element methods with experimental characterization of crystalline deformation through transmission electron microscopy coupled with precession electron diffraction (TEM-PED).
The modeling activity will focus on predicting strain distributions and their impact on electrical properties, while accurately accounting for the complexity of the technological stacks and critical fabrication steps such as epitaxy. In parallel, the experimental work will aim to quantify strain fields using TEM-PED and to compare these results with simulation outputs.
This research will contribute to the development of dedicated modeling tools and advanced characterization methodologies adapted to CFET architectures, with the goal of improving spatial resolution, measurement reproducibility, and the overall understanding of strain mechanisms in next-generation transistors.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Composants Silicium (LETI)
Service : Service Caractérisation, Conception et Simulation
Laboratoire : Laboratoire de Simulation et Modélisation
Date de début souhaitée : 01-10-2026
Ecole doctorale : Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Directeur de thèse : BARRAUD Sylvain
Organisme : CEA
Laboratoire : DRT
Funding category
Public/private mixed funding
Funding further details
Presentation of host institution and host laboratory
CEA Université Grenoble Alpes Laboratoire de Simulation et Modélisation
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département Composants Silicium (LETI)
Service : Service Caractérisation, Conception et Simulation
Candidate's profile
Nanosciences, nanotechnologie
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
TotalEnergies
Institut Sup'biotech de Paris
ADEME
CESI
MabDesign
SUEZ
ONERA - The French Aerospace Lab
ANRT
Laboratoire National de Métrologie et d'Essais - LNE
Tecknowmetrix
Ifremer
Nokia Bell Labs France
CASDEN
PhDOOC
Aérocentre, Pôle d'excellence régional
Groupe AFNOR - Association française de normalisation
Généthon
MabDesign
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège



