Exploring the fracture and corrosion of glass-ceramics using molecular dynamics simulations
| ABG-134542 | Thesis topic | |
| 2025-12-01 | Public funding alone (i.e. government, region, European, international organization research grant) |
- Materials science
- Physics
- Engineering sciences
Topic description
Context
Controlled crystallization of certain glasses leads to structured materials, designated glass-ceramics (GC), which consist of nano or microcrystals dispersed in a residual glass matrix. GC take advantage of beneficial ceramic and glass properties and have numerous applications to our daily lives, e.g., cookware, bone and dental implants, architecture, cell phone displays, etc. [2, 3]. In literature today, GC datasets concerning physical, mechanical, and fracture properties remain disjointed revealing only a handful of properties on a single GC sample. Furthermore, the susceptibility of glass-ceramics to stress corrosion cracking has been scarcely studied. This phenomenon is highly dependent on the relative humidity and temperature [4], and on material parameters (chemical composition [5] and microstructure [6], herein structure and length scale associated with crystal phases) and can severely restrict GC´s uses due to slow crack propagation leading to the failure of the GC under (apparently) harmless stresses.
Scientific challenge
Our long-term goal is to establish the link between the microstructure and the so-called stress corrosion cracking mechanism in glass-ceramics. In general, the stress corrosion cracking behaviour can be modelled by Wiederhorn’s formalism [4,7]. In 2020, Grutzik et al. [8] extended Wiederhorn’s formulation proposing a single equation to model the crack front velocity in a glass, where the velocity depends on the fracture toughness. The equation is constituting on a parameter set, which also includes the activation energies and characteristic length scales for both dry and wet environments and the temperature and relative humidity dependencies along with a few macroscopic parameters (Young’s modulus, density, etc.). Most of these parameters are from trivial to determine experimentally for a single glass-ceramics microstructure and composition, therefore we want to build chemically-specific molecular models to facilitate these characterizations. We have already established a protocol to construct molecular models of glass-ceramics but now the resulting structures and mechanical properties need to be validated. The mechanical properties will be probed using all-atom molecular dynamics simulations (elastic properties) and the advanced simulation technique called CAPRICCIO (fracture toughness) [9]. We will perform these calculations for varying glass-ceramics microstructure which will help us understand the influence of crystal phase morphology on the structural and mechanical properties of the resulting glass-ceramics.
Approach and methods
The PhD thesis will take place in the Département Mécanique et Verres of the Institut de Physique de Rennes. The department has an original and transdisciplinary position which lies at the crossroads of mechanics, physics and chemistry. Innovative experimentation (from synthesis to testing) coupled with computer simulation have made it possible to develop a recognized research activity on the mechanical behaviour of amorphous materials. The internship is part of a larger ANR-funded project involving stress corrosion cracking experts from CEA Saclay (Laure Chomat, Cindy Rountree, Daniel Bonamy) and glass-ceramics synthesis and characterization experts from Universidade Federal de São Carlos in Brazil (Edgar Zanotto, Vinicius Sciuti, Rodrigo Canto).
This PhD will be an opportunity to learn about and implement a number of numerical and experimental tools. Firstly, the LAMMPS code (https://www.lammps.org/) to simulate the molecular dynamics of materials. Secondly, to ensure the transfer of scales and link atomic structure and mechanical properties, strong multiscale coupling through a collaboration with S. Pfaller (FAU-Erlangen) [9] (https://www.capriccio.research.fau.eu/). The high-performance calculations required for this thesis will be prepared upstream at the Institute's computing centre, then deployed on national (GENCI) and European (ARCHER2, SuperMUC-NG) supercomputers. Validation of the predictions of the numerical simulations will make use of data from structural (XRD, AFM, NMR, DSC) and viscoelastic (Resonant Frequency Dynamical Analysis) and fracture (Single Edge Precracked Beam) mechanical characterization methods.
References
[1] Durán, A., Hu, L., & Richardson, K. A. Editorial special issue women in glass. Int. J. Appl. Glass Sci., 11(3):383–384, 2020.
[2] Zanotto, E. D. Bright future for glass-ceramics. Am. Ceram. Soc. Bull., 89(8):19–27, 2010.
[3] Zanotto, E. D. & Mauro, J. C. The glassy state of matter: Its definition and ultimate fate. J. Non-Cryst. Solids, 471:490–495, 2017.
[4] Wiederhorn, S. M. Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc., 50(8):407, 1967.
[5] Rountree, C. L. Recent progress to understand stress corrosion cracking in sodium borosilicate glasses: Linking the chemical composition to structural, physical and fracture properties. J. Phys. D: Appl. Phys, 50:34, 2017.
[6] Feng, W. Stress Corrosion Cracking of Sodium Borosilicate Amorphous Phase Separated Glasses. Phd thesis, Université Paris-Saclay, 2022.
[7] Wiederhorn, S. M. & Bolz, L. H. Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc., 53:543–548, 1970.
[8] Grutzik, S. J., Strong, K. T., & Rimsza, J. M. Kinetic model for prediction of subcritical crack growth, crack tip relaxation, and static fatigue threshold in silicate glass. J. Non-Cryst. Solids, 16:100134, 2022.
[9] Weber, F., Vassaux, M., Laubert, L., & Pfaller, S. The Capriccio method as a versatile tool for quantifying the fracture properties of glassy materials under complex loading conditions with chemical specificity. arXiv:2501.16537 (preprint), 2025.
Starting date
Funding category
Funding further details
Presentation of host institution and host laboratory
L’Institut de Physique de Rennes (IPR UMR 6251) est une Unité Mixte de Recherche qui a pour tutelles l’Université de Rennes et le CNRS.
Au CNRS, l’IPR est rattaché principalement au CNRS Physique et secondairement au CNRS Chimie et au CNRS Ingénierie.
Au sein de 5 bâtiments situés sur le campus de Beaulieu, les 6 départements de recherche mènent des activités scientifiques extrêmement variées et une grande partie des thématiques de la physique y est abordée.
Les travaux menés relèvent essentiellement de la recherche fondamentale sur des concepts émergents de la physique contemporaine et en réponse à des questions sociétales, avec une part de plus en plus importante d’activités qui se développent dans le cadre de partenariats industriels.
L'IPR développe des recherches fondamentale et appliquée au meilleur niveau international grâce à l’expertise des personnels techniques et administratifs. Une des forces majeures de l’IPR réside dans l’imbrication entre projets de recherche et développement de savoir-faire technique et technologique.
Website :
PhD title
Country where you obtained your PhD
Institution awarding doctoral degree
Graduate school
Candidate's profile
Formation en physique ou en science des matériaux, avec des compétences en dynamique moléculaire.
Des compétences en physique statistique, mécanique de la rupture et en calcul scientifique serait un plus.
Vous avez déjà un compte ?
Nouvel utilisateur ?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
Aérocentre, Pôle d'excellence régional
SUEZ
MabDesign
CASDEN
PhDOOC
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Groupe AFNOR - Association française de normalisation
TotalEnergies
Tecknowmetrix
Généthon
Laboratoire National de Métrologie et d'Essais - LNE
Ifremer
ANRT
Nokia Bell Labs France
ONERA - The French Aerospace Lab
Institut Sup'biotech de Paris
CESI
MabDesign
ADEME

