Where PhDs and companies meet
Menu
Login

Polystyrene-Alt-Maleic Anhydride Crosslinked Magnetic Melamine Anhydride: Synthesis, Characterization, Delivery of Paclitaxel, Cytotoxic Effects

ABG-134681 Master internship 12 months 20
2025-12-04
urmia university
Iran, Islamic Republic
  • Biology

Employer organisation

urmia university

Description

Objectives: Due to systematic side effects, there is a growing interest in nanoparticle formulation of anticancer drugs. Here, we aimed to synthesize poly (styrene-alt-maleic anhydride) cross-linked by melamine (PSMA/Me) and coated with magnetite nanoparticles (MNPs) PSMA/Me/Fe3O4. In addition, we aimed to load paclitaxel (PTX) into PSMA/Me/Fe3O4 for drug delivery and anticancer investigations. Methods: Novel PSMA/Me was synthesized via free radical copolymerization, coated with Fe3O4, and then used as a transporter for PTX delivery. Fabricated copolymer was characterized using SEM, TGA, and XRD techniques. Drug release rate and loading efficiency were investigated. Human ovarian cancer cells (Skov-3) and breast cancer cells (MCF-7 cells) were incubated with the serial concentration of either free PTX or PSMA/Me/Fe3O4/PTX for cell viability and IC50 analysis for 24 and 48 h. Results: Characterization methods confirmed PSMA/Me copolymer formation. The results showed a significant encapsulation efficiency of 83%. The drug release analysis exhibited that PSMA/Me/Fe3O4/PTX may be considered pH-sensitive nanocarriers. PSMA/Me/Fe3O4/PTX reduced cell viability both dose and time-dependently (p < 0.05). IC50 values of PSMA/Me/Fe3O4/PTX were low when compared to free PTX either 24 or 48 h post-treatment. Conclusions: Our results indicated that PSMA/Me/Fe3O4/PTX was more cytotoxic than PTX in both cancer cells. Findings indicated the potential of PSMA/Me/Fe3O4/PTX as an anticancer nanocarrier system.

Profile

razieh momen

Starting date

Dès que possible
Partager via
Apply
Close

Vous avez déjà un compte ?

Nouvel utilisateur ?