Metamatériaux 'tout diélectrique' pour une photonique à indice zéro // All-Dielectric Metamaterials for Zero-Index-Photonic : Negative Index and Near-Zero Index Materials at Terahertz
|
ABG-135009
ADUM-68096 |
Thesis topic | |
| 2026-01-13 |
Université Paris-Saclay GS Sciences de l'ingénierie et des systèmes
Palaiseau - Ile-de-France - France
Metamatériaux 'tout diélectrique' pour une photonique à indice zéro // All-Dielectric Metamaterials for Zero-Index-Photonic : Negative Index and Near-Zero Index Materials at Terahertz
- Electronics
métamatériaux "tout diélectrique" , THz, indice négatif/proche de zéro
All-Dielectric Metamaterials , Negative Index and Near-Zero Index Materials, THz
All-Dielectric Metamaterials , Negative Index and Near-Zero Index Materials, THz
Topic description
Dans les matériaux à indice nul, la phase est quasiment constante. Cela entraine un découplage des champs électrique et magnétique ; et donc, de la longueur d'onde et de la fréquence. La photonique à indice nul a donc des aspects fondamentaux et des implications
pratiques. Les systèmes visés sont les composants optiques et les systèmes antennaires.
Les métamatériaux ont ouvert de nouveaux champs en physique et en ingénierie, car ces matériaux artificiels structurés présentent des propriétés électromagnétiques inhabituelles, notamment l'indice de réfraction négatif ou nul, la focalisation sub-longueur d'onde, etc.
Nous considérons des métamatériaux 'tout diélectrique' qui ne subissent pas de pertes ohmiques ; cela permet d'atteindre le domaine du terahertz avec moins de dissipation d'énergie. De plus, leur cellule élémentaire a une géométrie simple.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The main feature of Zero Index Materials is that the phase distribution of the EM field is nearly constant, because of the decoupling of the electric and the magnetic fields, that results in the ``decoupling of the `` spatial'' (wavelength) and the ``temporal'' (frequency)''.
Zero Index Photonics has consequently fundamental and technological implications on different subfields of optics and nanophotonics. Antennas systems and optical components operating in the terahertz range are the targeted devices.
Metamaterials have opened a new field in physics and engineering. Indeed, these artificial structured materials give rise to unnatural fascinating phenomena such as negative index, sub-wavelength focusing and cloaking. Metamaterials also exhibit near-zero refractive index. These open a broad range of applications, from the microwave to the optical frequency domain. Metamaterials have now evolved towards the implementation of optical components.
Metamaterials that exhibit Near-Zero Index metamaterials (NZI) have a large number of applications including wavefront engineering, directivity and gain enhancement of antennas, electromagnetic cloaking, phase matching for nonlinear applications, unidirectional
transmission, defect waveguides, Zero-index Materials (ZIM) cavities, . . .
We consider All-Dielectric Metamaterials (ADM) which are the promising alternative to metallic metamaterials, because they undergo no
ohmic losses and consequently benefit of low energy dissipation and because they are of simple geometry . This makes them perfectly suited to the terahertz domain
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2026
pratiques. Les systèmes visés sont les composants optiques et les systèmes antennaires.
Les métamatériaux ont ouvert de nouveaux champs en physique et en ingénierie, car ces matériaux artificiels structurés présentent des propriétés électromagnétiques inhabituelles, notamment l'indice de réfraction négatif ou nul, la focalisation sub-longueur d'onde, etc.
Nous considérons des métamatériaux 'tout diélectrique' qui ne subissent pas de pertes ohmiques ; cela permet d'atteindre le domaine du terahertz avec moins de dissipation d'énergie. De plus, leur cellule élémentaire a une géométrie simple.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The main feature of Zero Index Materials is that the phase distribution of the EM field is nearly constant, because of the decoupling of the electric and the magnetic fields, that results in the ``decoupling of the `` spatial'' (wavelength) and the ``temporal'' (frequency)''.
Zero Index Photonics has consequently fundamental and technological implications on different subfields of optics and nanophotonics. Antennas systems and optical components operating in the terahertz range are the targeted devices.
Metamaterials have opened a new field in physics and engineering. Indeed, these artificial structured materials give rise to unnatural fascinating phenomena such as negative index, sub-wavelength focusing and cloaking. Metamaterials also exhibit near-zero refractive index. These open a broad range of applications, from the microwave to the optical frequency domain. Metamaterials have now evolved towards the implementation of optical components.
Metamaterials that exhibit Near-Zero Index metamaterials (NZI) have a large number of applications including wavefront engineering, directivity and gain enhancement of antennas, electromagnetic cloaking, phase matching for nonlinear applications, unidirectional
transmission, defect waveguides, Zero-index Materials (ZIM) cavities, . . .
We consider All-Dielectric Metamaterials (ADM) which are the promising alternative to metallic metamaterials, because they undergo no
ohmic losses and consequently benefit of low energy dissipation and because they are of simple geometry . This makes them perfectly suited to the terahertz domain
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2026
Funding category
Funding further details
Programme pour normalien ENS Paris-Saclay
Presentation of host institution and host laboratory
Université Paris-Saclay GS Sciences de l'ingénierie et des systèmes
Institution awarding doctoral degree
Université Paris-Saclay GS Sciences de l'ingénierie et des systèmes
Graduate school
575 Electrical, Optical, Bio-physics and Engineering
Candidate's profile
Le/la candidat(e) devra avoir le niveau master avec de bonnes notes. Il/elle devra s'intéresser à la simulation numérique et à la characterisation électromagnétique de matériaux. Il/elle devra être autonome et avoir la volonté de mener une thèse à bien.
The candidate should have the master level with good academic standing. He/she should have interest in numerical simulations and electromagnetic characterization of materials. He/she should be autonomous and have the will to complete a PhD thesis.
The candidate should have the master level with good academic standing. He/she should have interest in numerical simulations and electromagnetic characterization of materials. He/she should be autonomous and have the will to complete a PhD thesis.
2026-03-11
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
Nantes Université
Aérocentre, Pôle d'excellence régional
Groupe AFNOR - Association française de normalisation
Laboratoire National de Métrologie et d'Essais - LNE
Ifremer
TotalEnergies
ANRT
ONERA - The French Aerospace Lab
Généthon
ADEME
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Institut Sup'biotech de Paris
Medicen Paris Region
SUEZ
Tecknowmetrix
Servier
Nokia Bell Labs France

