Caractérisation structurale et fonctionnelle du facteur de transcription du virus respiratoire syncytial dans les fabriques virales et in vitro // Structural and functional characterisation of the Respiratory Syncytial Virus transcription factor in viral
|
ABG-135391
ADUM-69298 |
Thesis topic | |
| 2026-02-03 | Public funding alone (i.e. government, region, European, international organization research grant) |
Université Grenoble Alpes
Grenoble cedex 9 - Auvergne-Rhône-Alpes - France
Caractérisation structurale et fonctionnelle du facteur de transcription du virus respiratoire syncytial dans les fabriques virales et in vitro // Structural and functional characterisation of the Respiratory Syncytial Virus transcription factor in viral
- Biology
Virus Respiratoire Syncytial, transcription, fabriques virales, cryo-EM, microscopie de fluorescence, biochimie
Respiratory Syncytial Virus, transcription, viral factories, cryo-EM, fluorescence microscopy, biochemistry
Respiratory Syncytial Virus, transcription, viral factories, cryo-EM, fluorescence microscopy, biochemistry
Topic description
Le virus respiratoire syncytial (VRS) est la principale cause de bronchiolite et de pneumonie infantiles. Il représente également un fardeau important mais souvent sous-diagnostiqué chez les populations âgées vulnérables, contribuant de manière significative à la morbidité et à la mortalité hivernales traditionnellement attribuées à la grippe. Malgré plus de 60 ans de recherche, les progrès vers des contre-mesures efficaces ont été lents ; ce n'est qu'à la fin de l'année 2023 que les premiers vaccins, destinés aux personnes âgées et aux femmes enceintes, ont été introduits. Toutefois, aucune option vaccinale n'est disponible pour de larges segments de la population, notamment les nourrissons et les jeunes enfants. De plus, aucun antiviral direct n'est actuellement disponible, et la prise en charge clinique repose donc essentiellement sur des soins de support. Il est ainsi essentiel d'approfondir notre compréhension de la multiplication du VRS au sein des cellules infectées afin de permettre le développement rationnel de nouvelles stratégies thérapeutiques. Le génome du VRS est un ARN simple brin de polarité négative, enrobé par la nucléoprotéine virale N au sein d'une nucléocapside hélicoïdale, qui sert de matrice à la transcription et à la réplication assurées par la polymérase virale L et ses cofacteurs – la phosphoprotéine P et le régulateur de transcription M2-1, spécifique du VRS. Ensemble, les NCs, P, L et M2-1 forment des particules ribonucléoprotéiques (RNPs) hautement dynamiques, qui constituent l'unité infectieuse minimale du virus. Une fois dans le cytoplasme de la cellule infectée, les RNPs subissent une séparation de phase avec certaines protéines de l'hôte pour former des organites spécialisés appelés fabriques virales (VFs), dédiées à la multiplication des RNPs. L'un des objectifs des laboratoires partenaires proposant ce projet de thèse est de comprendre comment les VFs se forment, effectuent la transcription et de la réplication du génome du RSV, mûrissent et se désassemblent au cours du cycle viral. L'accent spécifique de cette thèse portera sur le régulateur de transcription M2-1, formant des sous-compartiments avec les ARNm viraux à l'intérieur des VFs. À l'interface de technologies d'imagerie avancées, de la biochimie et de la virologie, ce projet de thèse vise à comprendre comment, alors que N et M2-1 présentent toutes deux une forte propension à interagir avec l'ARN, N n'encapside que les antigénomes et les génomes, tandis que M2-1 se condense sélectivement avec les ARNm viraux, et élucider la manière dont M2-1 est régulé par des modifications post-traductionnelles et des interactions protéine-protéine. La détermination des mécanismes moléculaires d'action de ce régulateur de transcription, unique au RSV, comblera une lacune critique dans notre compréhension du cycle d'infection du VRS.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The Respiratory Syncytial Virus (RSV) is the leading cause of child bronchiolitis and pneumonia. It also represents a substantial but often underdiagnosed burden in vulnerable elderly populations, contributing significantly to winter morbidity and mortality traditionally attributed to influenza. Despite more than 60 years of research, progress towards effective countermeasures has been slow; only at the end of 2023 were the first vaccines, targeting the elderly and pregnant women, introduced. However, no vaccine options are available for large parts of the population, including infants and young children. In addition, no direct antivirals are available, and therefore current clinical management relies largely on supportive care. Thus, a deeper understanding of RSV multiplication within infected cells is essential for the rational development of new therapeutic strategies. The RSV genome is a negative sense RNA, enwrapped by the viral nucleoprotein N into a helical nucleocapsid, which serves as template for transcription and replication by the viral polymerase L and its cofactors – the phosphoprotein P and the RSV-specific transcription regulator M2-1. Together, NCs, P, L and M2-1 form highly dynamic ribonucleoprotein particles (RNPs), which constitute the minimal infectious unit of the virus. Once inside the cytoplasm of the infected cell, RNPs phase-separate with certain host proteins into specialised organelles called viral factories (VFs), dedicated to RNP multiplication. One of the goals of the partner labs proposing this PhD project is to understand how the VFs form, operate in RSV genome transcription and replication, mature and disassemble during the viral cycle. The specific focus of this thesis will be on the transcription regulator M2-1, shown to form subcompartments with viral mRNA inside the viral factories. Positioned at the interface of advanced imaging technologies, biochemistry and virology, this PhD project aims at understanding how, while both N and M2-1 have a strong tendency to interact with RNA, N encapsidates only antigenomes and genomes, whereas M2-1 condensates with viral mRNA selectively, and how M2-1 is regulated by post-translational modifications and protein-protein interactions. Elucidating the molecular mechanisms of action of this transcription regulator, unique to RSV, will fill a critical gap in our understanding of the RSV infection cycle.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2026
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The Respiratory Syncytial Virus (RSV) is the leading cause of child bronchiolitis and pneumonia. It also represents a substantial but often underdiagnosed burden in vulnerable elderly populations, contributing significantly to winter morbidity and mortality traditionally attributed to influenza. Despite more than 60 years of research, progress towards effective countermeasures has been slow; only at the end of 2023 were the first vaccines, targeting the elderly and pregnant women, introduced. However, no vaccine options are available for large parts of the population, including infants and young children. In addition, no direct antivirals are available, and therefore current clinical management relies largely on supportive care. Thus, a deeper understanding of RSV multiplication within infected cells is essential for the rational development of new therapeutic strategies. The RSV genome is a negative sense RNA, enwrapped by the viral nucleoprotein N into a helical nucleocapsid, which serves as template for transcription and replication by the viral polymerase L and its cofactors – the phosphoprotein P and the RSV-specific transcription regulator M2-1. Together, NCs, P, L and M2-1 form highly dynamic ribonucleoprotein particles (RNPs), which constitute the minimal infectious unit of the virus. Once inside the cytoplasm of the infected cell, RNPs phase-separate with certain host proteins into specialised organelles called viral factories (VFs), dedicated to RNP multiplication. One of the goals of the partner labs proposing this PhD project is to understand how the VFs form, operate in RSV genome transcription and replication, mature and disassemble during the viral cycle. The specific focus of this thesis will be on the transcription regulator M2-1, shown to form subcompartments with viral mRNA inside the viral factories. Positioned at the interface of advanced imaging technologies, biochemistry and virology, this PhD project aims at understanding how, while both N and M2-1 have a strong tendency to interact with RNA, N encapsidates only antigenomes and genomes, whereas M2-1 condensates with viral mRNA selectively, and how M2-1 is regulated by post-translational modifications and protein-protein interactions. Elucidating the molecular mechanisms of action of this transcription regulator, unique to RSV, will fill a critical gap in our understanding of the RSV infection cycle.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2026
Funding category
Public funding alone (i.e. government, region, European, international organization research grant)
Funding further details
Concours pour contrat doctoral
Presentation of host institution and host laboratory
Université Grenoble Alpes
Institution awarding doctoral degree
Université Grenoble Alpes
Graduate school
218 CSV- Chimie et Sciences du Vivant
Candidate's profile
Expérience en biochimie (culture de cellules de mammifères, purification de protéines) serait un avantage; biologie structurale (un intérêt pour l'apprentissage de la cryo-EM et de l'analyse avancée d'images cryo-EM 3D est essentiel); microscopie de fluorescence; goût prononcé pour les images et leur interpretation quantitative, appétence pour l'informatique.
Experience in biochemistry (mammalian cell culture, protein purification) would be an advantage; structural biology (a strong interest in learning cryo-EM and advanced 3D cryo-EM image analysis is essential); fluorescence microscopy; keen interest in imaging and quantitative image analysis, with an aptitude for computational work.
Experience in biochemistry (mammalian cell culture, protein purification) would be an advantage; structural biology (a strong interest in learning cryo-EM and advanced 3D cryo-EM image analysis is essential); fluorescence microscopy; keen interest in imaging and quantitative image analysis, with an aptitude for computational work.
2026-04-09
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
Laboratoire National de Métrologie et d'Essais - LNE
Servier
Nantes Université
SUEZ
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Généthon
Nokia Bell Labs France
Medicen Paris Region
TotalEnergies
Tecknowmetrix
Institut Sup'biotech de Paris
Groupe AFNOR - Association française de normalisation
Ifremer
ADEME
Aérocentre, Pôle d'excellence régional
ANRT
ONERA - The French Aerospace Lab
