Courbures de Ricci des graphes et des groupes : aspects géométriques et algorithmiques // Ricci curvature of graphs and groups: geometric and algorithmic aspects
ABG-132189
ADUM-66276 |
Thesis topic | |
2025-05-24 |
Université Grenoble Alpes
Grenoble Cedex - Auvergne-Rhône-Alpes - France
Courbures de Ricci des graphes et des groupes : aspects géométriques et algorithmiques // Ricci curvature of graphs and groups: geometric and algorithmic aspects
- Mathematics
Géométrie riemannienne, Théorie des graphes, Topologie algébrique, Théorie géométrique des groupes, Algorithmiques de graphes
Riemannian geometry, Graph theory, Algebraic geometry, Geometric group theory, graph algorithms
Riemannian geometry, Graph theory, Algebraic geometry, Geometric group theory, graph algorithms
Topic description
La courbure de Ricci joue un rôle important en géométrie riemannienne. Récemment, diverses notions de courbure de Ricci ont été introduites dans le cas des graphes, en particulier des graphes de Cayley de groupes de type fini. Les approches viennent du transport optimal, de la topologie algébrique ou encore de la géométrie des diffusions et semi-groupes. Un des premiers objectifs de la thèse sera de calculer ou d'estimer ces courbures de Ricci dans le cas de graphes ou de groupes explicites. Pour cela, il faudra entre autres développer des algorithmes efficaces dans le cas des graphes de grande taille. Un second objectif, lié au premier, sera de faire des comparaisons entre ces différentes courbures. Ceci a un intérêt d'un point de vue géométrique et algorithmique. Enfin, il faudraiit étendre des résultats classiques en géométrie riemannienne (Théorèmes de Bishop-Gromov, de Bonnet-Myers, …) dans ces cadres discrets.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Ricci curvature plays an important role in Riemannian geometry. Recently, various notions of Ricci curvature have been introduced in the case of graphs, in particular Cayley graphs of finitely generated groups. These approaches are related to optimal transportation, algebraic topology or the geometry of diffusions and semi-groups. One of the first objectives of the thesis will be to calculate or estimate these Ricci curvatures in the case of explicit graphs or groups. This will require, among other things, the development of efficient algorithms for large graphs. A second objective, linked to the first, will be to make comparisons between these different curvatures. This is of interest from both a geometric and algorithmic point of view. Finally, it will be necessary to extend classical results in Riemannian geometry (Bishop-Gromov, Bonnet-Myers theorems, etc.) to these discrete settings.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Ricci curvature plays an important role in Riemannian geometry. Recently, various notions of Ricci curvature have been introduced in the case of graphs, in particular Cayley graphs of finitely generated groups. These approaches are related to optimal transportation, algebraic topology or the geometry of diffusions and semi-groups. One of the first objectives of the thesis will be to calculate or estimate these Ricci curvatures in the case of explicit graphs or groups. This will require, among other things, the development of efficient algorithms for large graphs. A second objective, linked to the first, will be to make comparisons between these different curvatures. This is of interest from both a geometric and algorithmic point of view. Finally, it will be necessary to extend classical results in Riemannian geometry (Bishop-Gromov, Bonnet-Myers theorems, etc.) to these discrete settings.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Funding category
Funding further details
Concours allocations
Presentation of host institution and host laboratory
Université Grenoble Alpes
Institution awarding doctoral degree
Université Grenoble Alpes
Graduate school
217 MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Candidate's profile
Un très bonne maitrise des outils fondamentaux de géométrie riemannienne, topologie et théorie des groupes, ainsi qu'une motivation pour l'algorithmique.
A very good knowledge of the fundamental tools of Riemannian geometry, topology and group theory, as well as a motivation for algorithmics.
A very good knowledge of the fundamental tools of Riemannian geometry, topology and group theory, as well as a motivation for algorithmics.
2025-06-09
Apply
Close
Vous avez déjà un compte ?
Nouvel utilisateur ?
More information about ABG?
Get ABG’s monthly newsletters including news, job offers, grants & fellowships and a selection of relevant events…
Discover our members
SUEZ
MabDesign
Ifremer
Tecknowmetrix
Institut Sup'biotech de Paris
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Aérocentre, Pôle d'excellence régional
CESI
Nokia Bell Labs France
CASDEN
MabDesign
Généthon
Laboratoire National de Métrologie et d'Essais - LNE
PhDOOC
TotalEnergies
ANRT
Groupe AFNOR - Association française de normalisation
ADEME
ONERA - The French Aerospace Lab