Où docteurs et entreprises se rencontrent
Menu
Connexion

Diffusion préservant l'hélicité et localisation des ondes électromagnétiques dans les milieux désordonés // Helicity-Preserving Scattering and the Onset of Localization of Electromagnetic Waves in Disordered Media

ABG-135287
ADUM-67943
Sujet de Thèse
27/01/2026 Autre financement public
Université Côte d'Azur
Nice Cedex 02 - Provence-Alpes-Côte d'Azur - France
Diffusion préservant l'hélicité et localisation des ondes électromagnétiques dans les milieux désordonés // Helicity-Preserving Scattering and the Onset of Localization of Electromagnetic Waves in Disordered Media
  • Physique
Transport electromagnétique, Milieux désordonnés, Polarisation, Diffusion, Localisation d'Anderson
Electromagnetic transport, Disordered media, Polarization, Scattering, Anderson Localization

Description du sujet

Context
The HELIX project aims to explore the role of helicity conservation in electromagnetic transport through disordered media. Recent theoretical work suggests that when scattering preserves the helicity (handedness of circular polarization) of electromagnetic waves, Anderson localization can be inhibited, leading to a form of topological delocalization. This phenomenon has never been experimentally tested. The proposed internship will contribute to the preliminary design and modeling steps required to build a microwave platform capable of investigating this effect.

Objectives
The intern will participate in the initial phase of the project, focusing on the design and characterization of helicity-preserving scatterers (dual or quasi-dual meta-atoms) in the microwave regime. The work will involve both theoretical and numerical aspects: understanding the conditions for duality symmetry and helicity preservation, simulating electromagnetic scattering by individual resonators, and studying the collective response of small disordered assemblies.

Work program
Review the fundamental concepts of electromagnetic duality, helicity, and Anderson localization. Use numerical simulation tools (open-source solvers) to calculate the scattering matrices of proposed resonators combining electric and magnetic dipolar modes. Evaluate helicity conversion metrics and identify geometries that minimize helicity relaxation. Investigate how disorder (random spatial arrangements) modifies scattering and transport properties. If time allows, compare the numerical predictions with available experimental data from the microwave laboratory.

Expected outcome
The internship will provide the first quantitative assessment of candidate scatterer designs suitable for helicity-preserving random media. It will yield simulation data and analysis tools that will directly guide the fabrication of prototypes and the subsequent experimental phase of the HELIX project.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Context
The HELIX project aims to explore the role of helicity conservation in electromagnetic transport through disordered media. Recent theoretical work suggests that when scattering preserves the helicity (handedness of circular polarization) of electromagnetic waves, Anderson localization can be inhibited, leading to a form of topological delocalization. This phenomenon has never been experimentally tested. The proposed internship will contribute to the preliminary design and modeling steps required to build a microwave platform capable of investigating this effect.

Objectives
The intern will participate in the initial phase of the project, focusing on the design and characterization of helicity-preserving scatterers (dual or quasi-dual meta-atoms) in the microwave regime. The work will involve both theoretical and numerical aspects: understanding the conditions for duality symmetry and helicity preservation, simulating electromagnetic scattering by individual resonators, and studying the collective response of small disordered assemblies.

Work program
Review the fundamental concepts of electromagnetic duality, helicity, and Anderson localization. Use numerical simulation tools (open-source solvers) to calculate the scattering matrices of proposed resonators combining electric and magnetic dipolar modes. Evaluate helicity conversion metrics and identify geometries that minimize helicity relaxation. Investigate how disorder (random spatial arrangements) modifies scattering and transport properties. If time allows, compare the numerical predictions with available experimental data from the microwave laboratory.

Expected outcome
The internship will provide the first quantitative assessment of candidate scatterer designs suitable for helicity-preserving random media. It will yield simulation data and analysis tools that will directly guide the fabrication of prototypes and the subsequent experimental phase of the HELIX project.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Début de la thèse : 01/10/2026
WEB : https://inphyni.univ-cotedazur.eu/sites/wacs

Nature du financement

Autre financement public

Précisions sur le financement

ANR Financement d'Agences de financement de la recherche

Présentation établissement et labo d'accueil

Université Côte d'Azur

Etablissement délivrant le doctorat

Université Côte d'Azur

Ecole doctorale

364 SFA - Sciences Fondamentales et Appliquées

Profil du candidat

We are looking for candidates who are highly motivated to conduct research and have a keen interest in fundamental physics, particularly wave physics.
We are looking for candidates who are highly motivated to conduct research and have a keen interest in fundamental physics, particularly wave physics.
01/05/2026
Partager via
Postuler
Fermer

Vous avez déjà un compte ?

Nouvel utilisateur ?