Dyades photoélectro-réductrices à base de métaux abondants // PhotoelectroReductive Dyads from Earth-Abundant metals
|
ABG-135378
ADUM-68963 |
Sujet de Thèse | |
| 03/02/2026 | Contrat doctoral |
Université Grenoble Alpes
Grenoble Cedex 9 - Auvergne-Rhône-Alpes - France
Dyades photoélectro-réductrices à base de métaux abondants // PhotoelectroReductive Dyads from Earth-Abundant metals
- Chimie
photocatalyse, photosensibilisateurs ferreux, activation de l'oxygène, oxydation de substrats
photocatalysis, Iron(II) sensitizers, O2 activation, substrates oxidation
photocatalysis, Iron(II) sensitizers, O2 activation, substrates oxidation
Description du sujet
Le projet de thèse vise à développer des systèmes photocatalytiques durables en remplaçant les photosensibilisateurs (PS) à base de ruthénium, coûteux, par des complexes de fer abondant dans la croûte terrestre au sein d'assemblages supramoléculaires PS–Cat, où Cat désigne le centre catalytique. Bien que les chromophores au Ru présentent d'excellentes propriétés photophysiques, les complexes de Fe(II) ont longtemps été limités par la désactivation ultrarapide de leurs états de transfert de charge métal-vers-ligand (MLCT). Des avancées récentes dans la conception des ligands ont permis de surmonter cette limitation, conduisant à des états excités de durée de vie nanoseconde et aux premières applications réussies de photosensibilisateurs au fer dans les cellules solaires sensibilisées par colorant (DSSC). S'appuyant sur ces progrès, le projet de thèse consiste à concevoir des dyades push–pull Fephot-CuCat comme alternatives sans métaux nobles à un analogue Ruphot-CuCat précédemment décrit par des partenaires du consortium, capable de catalyser l'oxydation de substrats organiques sous activation photochimique et en présence d'O2. Cette approche permettra, pour la première fois, une comparaison directe entre des systèmes photocatalytiques à base de fer et de ruthénium. Le projet se concentrera sur l'optimisation des unités photosensibilisatrices au fer afin de favoriser un transfert de charge efficace vers le catalyseur au cuivre, ouvrant la voie à une photocatalyse basée sur le fer sans précedent.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The PhD project aims to develop sustainable photocatalytic systems by replacing costly ruthenium-based photosensitizers (PS) with earth-abundant iron complexes in supramolecular PS–Cat assemblies, where Cat denotes the catalytic center. Although Ru chromophores exhibit excellent photophysical properties, Fe(II) complexes have traditionally been limited by the ultrafast deactivation of their metal-to-ligand charge transfer (MLCT) excited states. Recent advances in ligand design have significantly improved the photophysical properties of iron complexes, enabling MLCT excited-state lifetimes in the nanosecond regime and leading to their first successful applications in dye-sensitized solar cells (DSSCs). Building on these breakthroughs, this PhD project will focus on the design and synthesis of push–pull Fe-based photosensitizer–Cu catalyst (Fephot–Cucat) dyads as noble-metal-free alternatives to a Ruphot–Cucat analogue previously developed within the consortium. The Ru-based system has demonstrated the ability to drive light- and O₂-mediated oxidation of organic substrates.
The proposed work will enable, for the first time, a direct comparison between iron- and ruthenium-based photocatalytic assemblies. The project will focus on optimizing the Fephot units to promote efficient photoinduced charge transfer to the Cucat center, ultimately advancing the development of innovative and sustainable iron-based photocatalytic systems.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2026
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The PhD project aims to develop sustainable photocatalytic systems by replacing costly ruthenium-based photosensitizers (PS) with earth-abundant iron complexes in supramolecular PS–Cat assemblies, where Cat denotes the catalytic center. Although Ru chromophores exhibit excellent photophysical properties, Fe(II) complexes have traditionally been limited by the ultrafast deactivation of their metal-to-ligand charge transfer (MLCT) excited states. Recent advances in ligand design have significantly improved the photophysical properties of iron complexes, enabling MLCT excited-state lifetimes in the nanosecond regime and leading to their first successful applications in dye-sensitized solar cells (DSSCs). Building on these breakthroughs, this PhD project will focus on the design and synthesis of push–pull Fe-based photosensitizer–Cu catalyst (Fephot–Cucat) dyads as noble-metal-free alternatives to a Ruphot–Cucat analogue previously developed within the consortium. The Ru-based system has demonstrated the ability to drive light- and O₂-mediated oxidation of organic substrates.
The proposed work will enable, for the first time, a direct comparison between iron- and ruthenium-based photocatalytic assemblies. The project will focus on optimizing the Fephot units to promote efficient photoinduced charge transfer to the Cucat center, ultimately advancing the development of innovative and sustainable iron-based photocatalytic systems.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2026
Nature du financement
Contrat doctoral
Précisions sur le financement
Concours pour contrat doctoral
Présentation établissement et labo d'accueil
Université Grenoble Alpes
Etablissement délivrant le doctorat
Université Grenoble Alpes
Ecole doctorale
218 CSV- Chimie et Sciences du Vivant
Profil du candidat
La candidate ou le candidat devra posséder d'excellentes connaissances théoriques et pratiques en chimie de synthèse organique et idéalement en chimie de coordination. Des connaissances en spectroscopie UV-VIS seront appréciées. Une aptitude à évoluer dans un environnement collaboratif et international faciliteront l'avancement du projet.
The candidate should have excellent theoretical and practical expertise in organic synthetic chemistry, with knowledge of coordination chemistry considered an asset. Familiarity with UV–Vis spectroscopy would be advantageous. The ability to thrive in a collaborative and international research environment will favour the successful progress of the project.
The candidate should have excellent theoretical and practical expertise in organic synthetic chemistry, with knowledge of coordination chemistry considered an asset. Familiarity with UV–Vis spectroscopy would be advantageous. The ability to thrive in a collaborative and international research environment will favour the successful progress of the project.
09/04/2026
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Groupe AFNOR - Association française de normalisation
Nantes Université
Institut Sup'biotech de Paris
ANRT
Tecknowmetrix
Ifremer
Medicen Paris Region
ADEME
Laboratoire National de Métrologie et d'Essais - LNE
Servier
Nokia Bell Labs France
Généthon
SUEZ
TotalEnergies
Aérocentre, Pôle d'excellence régional
ONERA - The French Aerospace Lab
