Roles de la cohésine dans la stabilité du génome // the multiple roles of cohesin in genome stability
|
ABG-135467
ADUM-69795 |
Sujet de Thèse | |
| 04/02/2026 | Autre financement public |
Université Paris-Saclay GS Life Sciences and Health
Fontenay-aux-Roses cedex - Ile-de-France - France
Roles de la cohésine dans la stabilité du génome // the multiple roles of cohesin in genome stability
- Biologie
stabilité du génome, réparation de l'ADN, cohésine, SMC
genome stability, DNA repair, cohesin, SMC
genome stability, DNA repair, cohesin, SMC
Description du sujet
La cohésine, un complexe protéique en forme d'anneau, est essentielle à la stabilité du génome en régulant les boucles d'ADN, l'expression des gènes, la cohésion des chromatides soeurs et la réparation de l'ADN. Elle forme des boucles intrachromosomiques pendant l'interphase, contribuant à l'organisation de la chromatine en rapprochant enhancers et promoteurs. La cohésine maintient également la cohésion des chromatides soeurs pendant la réplication de l'ADN et est impliquée dans la réparation des cassures double brin (DSB). En réponse aux dommages à l'ADN, la cohésine se lie aux DSB et renforce la cohésion induite par les cassures (DI-cohésion). De plus, nos travaux récents ont montré que la cohésine lie les extrémités des DSB grâce à des oligomères (Phipps et al., 2025).
Ce projet de recherche s'inscrit dans le cadre d'un projet ANR qui explorera comment les dommages à l'ADN influencent les rôles de la cohésine dans la stabilité du génome. L'hypothèse centrale est que ces dommages activent des populations distinctes de cohésine avec des fonctions spécifiques, essentielles pour l'intégrité du génome. En utilisant Saccharomyces cerevisiae comme modèle, le projet vise trois objectifs : analyser l'impact des dommages sur la composition de la cohésine, étudier son oligomérisation dans l'attachement des DSB, et identifier les populations de cohésine impliquées dans la DI-cohésion.
La méthodologie combine approches biochimiques, génétiques et génomiques. Les tâches clés incluent l'identification de nouveaux interacteurs de la cohésine, l'étude des complexes dans des mutants spécifiques, et l'analyse des modifications post-traductionnelles
Ce projet fournira une compréhension approfondie des multiples rôles multiples de la cohésine dans la stabilité du génome, au-delà de sa fonction classique de cohésion des chromatides sœurs.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Cohesin, a ring-shaped protein complex, is crucial for genome stability by regulating DNA loops, gene expression, sister chromatid cohesion, and DNA repair. It forms intrachromosomal loops during interphase, aiding in chromatin organization by bringing enhancers and promoters together. Cohesin also ensures sister chromatid cohesion during DNA replication and repairs double-strand breaks (DSBs). In response to DNA damage, cohesin binds to DSBs and enhances cohesion via damage-induced cohesion (DI-cohesion). Our recent findings show that cohesin tethers DSB ends through oligomer formation (Phipps et al., 2025).
This research project aims, in the frame of an ANR funded project, to explore how DNA damage influences cohesin's functions in genome stability. The main hypothesis is that DNA damage activates distinct cohesin populations with specific roles critical for maintaining genome integrity. Using Saccharomyces cerevisiae as a model, the project focuses on three goals: analyzing the impact of DNA damage on cohesin composition and modifications, studying oligomerization in DSB tethering, and identifying the cohesin populations involved in DI-cohesion.
The methodology combines biochemical, genetic, and genomic approaches. Key tasks include identifying new cohesin interactors, analyzing cohesin in specific mutants, and investigating post-translational modifications.
This project aims to provide comprehensive insights into cohesin's diverse roles in genome stability beyond traditional sister chromatid cohesion.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2026
WEB : https://jacob.cea.fr/drf/ifrancoisjacob/Pages/Departements/IRCM/Equipes/LION.aspx
Ce projet de recherche s'inscrit dans le cadre d'un projet ANR qui explorera comment les dommages à l'ADN influencent les rôles de la cohésine dans la stabilité du génome. L'hypothèse centrale est que ces dommages activent des populations distinctes de cohésine avec des fonctions spécifiques, essentielles pour l'intégrité du génome. En utilisant Saccharomyces cerevisiae comme modèle, le projet vise trois objectifs : analyser l'impact des dommages sur la composition de la cohésine, étudier son oligomérisation dans l'attachement des DSB, et identifier les populations de cohésine impliquées dans la DI-cohésion.
La méthodologie combine approches biochimiques, génétiques et génomiques. Les tâches clés incluent l'identification de nouveaux interacteurs de la cohésine, l'étude des complexes dans des mutants spécifiques, et l'analyse des modifications post-traductionnelles
Ce projet fournira une compréhension approfondie des multiples rôles multiples de la cohésine dans la stabilité du génome, au-delà de sa fonction classique de cohésion des chromatides sœurs.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Cohesin, a ring-shaped protein complex, is crucial for genome stability by regulating DNA loops, gene expression, sister chromatid cohesion, and DNA repair. It forms intrachromosomal loops during interphase, aiding in chromatin organization by bringing enhancers and promoters together. Cohesin also ensures sister chromatid cohesion during DNA replication and repairs double-strand breaks (DSBs). In response to DNA damage, cohesin binds to DSBs and enhances cohesion via damage-induced cohesion (DI-cohesion). Our recent findings show that cohesin tethers DSB ends through oligomer formation (Phipps et al., 2025).
This research project aims, in the frame of an ANR funded project, to explore how DNA damage influences cohesin's functions in genome stability. The main hypothesis is that DNA damage activates distinct cohesin populations with specific roles critical for maintaining genome integrity. Using Saccharomyces cerevisiae as a model, the project focuses on three goals: analyzing the impact of DNA damage on cohesin composition and modifications, studying oligomerization in DSB tethering, and identifying the cohesin populations involved in DI-cohesion.
The methodology combines biochemical, genetic, and genomic approaches. Key tasks include identifying new cohesin interactors, analyzing cohesin in specific mutants, and investigating post-translational modifications.
This project aims to provide comprehensive insights into cohesin's diverse roles in genome stability beyond traditional sister chromatid cohesion.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2026
WEB : https://jacob.cea.fr/drf/ifrancoisjacob/Pages/Departements/IRCM/Equipes/LION.aspx
Nature du financement
Autre financement public
Précisions sur le financement
Contrats ED : Programme blanc GS-LSaH*ANR*Programme pour normalien ENS Paris-Saclay
Présentation établissement et labo d'accueil
Université Paris-Saclay GS Life Sciences and Health
Etablissement délivrant le doctorat
Université Paris-Saclay GS Life Sciences and Health
Ecole doctorale
577 Structure et Dynamique des Systèmes Vivants
Profil du candidat
Le(la) candidat(e) devra :
- être diplômé(e) de l'ENS ou titulaire d'un Master 2 en génétique/biologie moléculaire/biologie cellulaire.
- maîtriser les techniques classiques de biologie moléculaire
- avoir des connaissances solides en génétique de la levure et microscopie seront un fort atout.
The candidate must: – hold a degree from the ENS or a Master's degree (M2) in genetics, molecular biology, or cell biology; – be proficient in standard molecular biology techniques; – have strong knowledge of yeast genetics and microscopy, which would be a major asset.
The candidate must: – hold a degree from the ENS or a Master's degree (M2) in genetics, molecular biology, or cell biology; – be proficient in standard molecular biology techniques; – have strong knowledge of yeast genetics and microscopy, which would be a major asset.
23/03/2026
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
Institut Sup'biotech de Paris
Laboratoire National de Métrologie et d'Essais - LNE
Généthon
Medicen Paris Region
Nantes Université
ANRT
Servier
ADEME
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
ONERA - The French Aerospace Lab
Tecknowmetrix
Nokia Bell Labs France
Groupe AFNOR - Association française de normalisation
Aérocentre, Pôle d'excellence régional
TotalEnergies
SUEZ
Ifremer
