Où docteurs et entreprises se rencontrent
Menu
Connexion

DYNAMIQUE ET DESORDRE MOLECULAIRE DANS LA MACHINERIE DE REPLICATION DU VIRUS SRAS COV 2 // NMR STUDIES OF MOLECULAR DYNAMICS AND DISORDER IN THE VIRAL REPLICATION MACHINERY OF SARS-COV-2

ABG-135525
ADUM-70044
Sujet de Thèse
06/02/2026 Contrat doctoral
Université Grenoble Alpes
Grenoble cedex 9 - Auvergne-Rhône-Alpes - France
DYNAMIQUE ET DESORDRE MOLECULAIRE DANS LA MACHINERIE DE REPLICATION DU VIRUS SRAS COV 2 // NMR STUDIES OF MOLECULAR DYNAMICS AND DISORDER IN THE VIRAL REPLICATION MACHINERY OF SARS-COV-2
  • Biologie
Biologie structurale, Spectroscopie RMN, Protéines désordonnées, Dynamiques des Proteines, SARS-CoV-2
Structural biology, NMR spectroscopy, Disordered proteins, Protein Dynamics, SARS-CoV-2

Description du sujet

La nucléoprotéine (N) du coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) est essentielle à la réplication du génome, à l'encapsidation du génome viral et à la régulation de la transcription des gènes. Le domaine central désordonné est essentiel à la fonction de cette protéine hautement dynamique, contenant un certain nombre de mutations importantes qui sont responsables d'une meilleure activité virale. La spectroscopie RMN est l'outil de choix pour étudier le comportement conformationnel des protéines intrinsèquement désordonnées, une classe abondante de protéines qui sont fonctionnelles sous leur forme désordonnée. Elles représentent 40 % du protéome et sont trop dynamiques pour être étudiées par cristallographie ou microscopie électronique. Le laboratoire hôte a développé un grand nombre d'outils uniques basés sur la RMN pour aider à comprendre la fonction de cette classe de protéines à une résolution atomique. Nous utiliserons la RMN, la RMN paramagnétique, la diffusion aux petits angles, le FRET à molécule unique et la microscopie électronique, en combinaison avec la simulation de la dynamique moléculaire, pour décrire les interactions de N avec les protéines partenaires virales et l'ARN viral et le processus d'encapsidation virale. Les résultats seront corrélés avec la microscopie optique et électronique, réalisée en collaboration.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The nucleocapsid protein (N) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for genome replication, encapsidating the viral genome and regulating gene transcription. The protein is highly disordered, comprising two disordered termini and a central disordered domain that contains a number of important mutations that are responsible for enhanced viral fitness.
Intrinsically disordered proteins represent an abundant class of proteins, 40% of the human proteome, that are functional in their disordered form. Despite their abundance their highly diverse functional roles remain poorly described, because of their inherent flexibility, they are too dynamic to be studied by crystallography or electron microscopy, or indeed predicted using artificial intelligence-based techniques. NMR spectroscopy is the tool of choice for studying the conformational behaviour of intrinsically disordered proteins and the host lab has developed a large number of unique NMR-based tools to help understand the function of this class of proteins at atomic resolution.
The host laboratory has made two important contributions to our understanding of the nucleocapsid protein, describing the folding-upon-binding interaction of the central disordered domain, and revealing the inhibitory impact of hyperphosphorylation of this domain on RNA binding. The successful doctoral student will build on these unique contributions, to understand the process of encapsidation of the viral RNA, immediately following RNA synthesis. This process, involving two highly dynamic viral proteins nsp3, N and viral RNA, will reveal the molecular basis of assembly of the viral nucleocapsid found in infectious virions, as well as the impact of mutations present in known variants-of-concern (for example the delta and omicron variants).
The project will involve the use of solution state NMR, small angle scattering, single molecule FRET and electron microscopy, in combination with molecular dynamics simulation, to investigate the interactions of N with viral partner proteins and viral RNA at atomic resolution, and eventually lead to the description of the trajectory from newly synthesized RNA to encapsidated viral genome.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Début de la thèse : 01/10/2026

Nature du financement

Contrat doctoral

Précisions sur le financement

Concours pour contrat doctoral

Présentation établissement et labo d'accueil

Université Grenoble Alpes

Etablissement délivrant le doctorat

Université Grenoble Alpes

Ecole doctorale

218 CSV- Chimie et Sciences du Vivant

Profil du candidat

M2 en Biophysique, Chimie, Biologie, Physique. Experience en expression et purification des proteines ou spectroscopie RMN un plus, mais non essentiel
Master in biophysics, biology, chemistry, physics or a related field. Prior experience in protein expression and purification and/or spectroscopy is a plus, but not required.
09/04/2026
Partager via
Postuler
Fermer

Vous avez déjà un compte ?

Nouvel utilisateur ?