DeepAneurysm // DeepAneurysm
ABG-131267
ADUM-65320 |
Sujet de Thèse | |
18/04/2025 |
Université de Technologie de Compiègne
Compiègne cedex - France
DeepAneurysm // DeepAneurysm
- Mathématiques
anévrisme aortique abdominal, rupture, fluid-structure interaction, modélisation numérique, machine learning, physics-aware model
aortic addominal aneurysm, rupture, fluid-structure interaction, numerical model, machine learning, physics-aware model
aortic addominal aneurysm, rupture, fluid-structure interaction, numerical model, machine learning, physics-aware model
Description du sujet
The idea behind our project is to modernize and leverage numerical Abdominal Aortic Aneurysm (AAA) simulations with Artificial Intelligence (AI) to make their use easier in the medical community and the procurement of the biomechanical patient-specific data possible within less than one minute, which is a real challenge. On the fundamental science side, and as mentioned above, our objective is to investigate state-of-the-art data-driven identification algorithms for high-dimensional spatio-temporal problems from previous high-fidelity simulations, possibly readjusted with patient data/measurements. We hope they will enable live visualizations of quantities and fields of interest (stress fields, risk assessment according to the evolution) for decision-making (surgical decision, surgical procedure).
Current computational Physics-based solvers can provide accurate results but are too time-consuming for medical use. A breakthrough is thus needed to lower the computational time by at least 3 or 4 orders of magnitude. We believe that a smart synergy between Full-Order models (FOM) and AI-based strategies can take up this challenge.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The idea behind our project is to modernize and leverage numerical Abdominal Aortic Aneurysm (AAA) simulations with Artificial Intelligence (AI) to make their use easier in the medical community and the procurement of the biomechanical patient-specific data possible within less than one minute, which is a real challenge. On the fundamental science side, and as mentioned above, our objective is to investigate state-of-the-art data-driven identification algorithms for high-dimensional spatio-temporal problems from previous high-fidelity simulations, possibly readjusted with patient data/measurements. We hope they will enable live visualizations of quantities and fields of interest (stress fields, risk assessment according to the evolution) for decision-making (surgical decision, surgical procedure).
Current computational Physics-based solvers can provide accurate results but are too time-consuming for medical use. A breakthrough is thus needed to lower the computational time by at least 3 or 4 orders of magnitude. We believe that a smart synergy between Full-Order models (FOM) and AI-based strategies can take up this challenge.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Current computational Physics-based solvers can provide accurate results but are too time-consuming for medical use. A breakthrough is thus needed to lower the computational time by at least 3 or 4 orders of magnitude. We believe that a smart synergy between Full-Order models (FOM) and AI-based strategies can take up this challenge.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The idea behind our project is to modernize and leverage numerical Abdominal Aortic Aneurysm (AAA) simulations with Artificial Intelligence (AI) to make their use easier in the medical community and the procurement of the biomechanical patient-specific data possible within less than one minute, which is a real challenge. On the fundamental science side, and as mentioned above, our objective is to investigate state-of-the-art data-driven identification algorithms for high-dimensional spatio-temporal problems from previous high-fidelity simulations, possibly readjusted with patient data/measurements. We hope they will enable live visualizations of quantities and fields of interest (stress fields, risk assessment according to the evolution) for decision-making (surgical decision, surgical procedure).
Current computational Physics-based solvers can provide accurate results but are too time-consuming for medical use. A breakthrough is thus needed to lower the computational time by at least 3 or 4 orders of magnitude. We believe that a smart synergy between Full-Order models (FOM) and AI-based strategies can take up this challenge.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Nature du financement
Précisions sur le financement
Financement d'un établissement public Français
Présentation établissement et labo d'accueil
Université de Technologie de Compiègne
Etablissement délivrant le doctorat
Université de Technologie de Compiègne
Ecole doctorale
71 Sciences pour l'ingénieur
Profil du candidat
Etudiant MSc ou équivalent
Analyse numérique
Calcul scientifique
Mécanique des fluides, mécanique des structures
Machine learning / Scientifique Machine Learning
Reduced-order models, deep learning
Software, python programming
MSc student Scientific Computing Fluid mechanics, solid mechanics Machine learning / Scientifique Machine Learning Reduced-order models, deep learning Software, python programming
MSc student Scientific Computing Fluid mechanics, solid mechanics Machine learning / Scientifique Machine Learning Reduced-order models, deep learning Software, python programming
05/05/2025
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Besoin d'informations sur l'ABG ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
ONERA - The French Aerospace Lab
Groupe AFNOR - Association française de normalisation
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Institut Sup'biotech de Paris
CESI
Généthon
ANRT
CASDEN
MabDesign
Aérocentre, Pôle d'excellence régional
ADEME
Tecknowmetrix
Nokia Bell Labs France
Laboratoire National de Métrologie et d'Essais - LNE
Ifremer
MabDesign
TotalEnergies
PhDOOC
SUEZ
-
EmploiRef. 131402Vandoeuvre-lès-Nancy , Grand Est , FranceInstitut National de Recherche et Sécurité
Chercheur en épidémiologie quantitative (H/F)
Expertises scientifiques :Psychologie, neurosciences
Niveau d’expérience :Confirmé
-
EmploiRef. 131332DIJON , Bourgogne-Franche-Comté , FranceESEO
ENSEIGNANT.E-CHERCHEUR.SE EN INFORMATIQUE (F/H)
Expertises scientifiques :Informatique - Informatique - Numérique
Niveau d’expérience :Niveau d'expérience indifférent