Scientific deep learning for Anomaly Detection in ductile DAmage Modeling applied to metal forming // Scientific deep learning for Anomaly Detection in ductile DAmage Modeling applied to metal forming
ABG-131920
ADUM-65566 |
Sujet de Thèse | |
14/05/2025 |
Mines Paris-PSL
Sophia Antipolis - Ile-de-France - France
Scientific deep learning for Anomaly Detection in ductile DAmage Modeling applied to metal forming // Scientific deep learning for Anomaly Detection in ductile DAmage Modeling applied to metal forming
- Mathématiques
., .
Model Order Reduction, Scientific Machine Learning, HPC
Model Order Reduction, Scientific Machine Learning, HPC
Description du sujet
.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Damage is a particular form of anomaly in material forming. These anomalies
come from materials microstructure heterogeneity that drives ductile damage mechanisms. We propose to combine deep learning for anomaly detection and mechanical modeling of damage. This work is limited to the use of synthetic data produced with mechanical models calibrated in the context of previous work in materials mechanics. However, these models remain imperfect, in particular for dealing with recycled materials or, in general, materials with a high variability of their physical properties.
In this case, an anomaly may be caused by unusual properties or an unsuitable mechanical model. The anomalies will be identified as cases out-of-distribution of so-called normal data. The objective of this project is to develop: (i) self-supervised learning of a latent space of normal data, (ii) an anomaly detection task using this latent space, (iii) a final stage of scientific explanation of the causes of anomalies based on explainable AI. All this in the context of large deformations of point cloud.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
WEB : https://www.cemef.minesparis.psl.eu/wp-content/uploads/2025/03/ADDAM.pdf
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Damage is a particular form of anomaly in material forming. These anomalies
come from materials microstructure heterogeneity that drives ductile damage mechanisms. We propose to combine deep learning for anomaly detection and mechanical modeling of damage. This work is limited to the use of synthetic data produced with mechanical models calibrated in the context of previous work in materials mechanics. However, these models remain imperfect, in particular for dealing with recycled materials or, in general, materials with a high variability of their physical properties.
In this case, an anomaly may be caused by unusual properties or an unsuitable mechanical model. The anomalies will be identified as cases out-of-distribution of so-called normal data. The objective of this project is to develop: (i) self-supervised learning of a latent space of normal data, (ii) an anomaly detection task using this latent space, (iii) a final stage of scientific explanation of the causes of anomalies based on explainable AI. All this in the context of large deformations of point cloud.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
WEB : https://www.cemef.minesparis.psl.eu/wp-content/uploads/2025/03/ADDAM.pdf
Nature du financement
Précisions sur le financement
Financement d'un établissement public Français
Présentation établissement et labo d'accueil
Mines Paris-PSL
Etablissement délivrant le doctorat
Mines Paris-PSL
Ecole doctorale
364 SFA - Sciences Fondamentales et Appliquées
Profil du candidat
.
Master degree in Applied Mathematics or in Computational Mechanics
Master degree in Applied Mathematics or in Computational Mechanics
31/08/2025
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Besoin d'informations sur l'ABG ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
TotalEnergies
ADEME
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
PhDOOC
MabDesign
ANRT
Laboratoire National de Métrologie et d'Essais - LNE
MabDesign
Tecknowmetrix
ONERA - The French Aerospace Lab
CASDEN
Institut Sup'biotech de Paris
Généthon
Nokia Bell Labs France
Groupe AFNOR - Association française de normalisation
Ifremer
CESI
Aérocentre, Pôle d'excellence régional
SUEZ