Simulation des phénomènes d’interaction entre ondes ultrasonores et microstructure métalliques pour l’imagerie et la caractérisation // Simulation of interaction phenomena between ultrasonic waves and metallic microstructures for imaging and characterizat
ABG-132042 | Sujet de Thèse | |
17/05/2025 | Financement public/privé |
CEA Université de Lorraine Laboratoire de Simulation, Modélisation et Analyse
Saclay
Simulation des phénomènes d’interaction entre ondes ultrasonores et microstructure métalliques pour l’imagerie et la caractérisation // Simulation of interaction phenomena between ultrasonic waves and metallic microstructures for imaging and characterizat
- Robotique
Usine du futur dont robotique et contrôle non destructif / Défis technologiques
Description du sujet
L’interaction des ondes avec la matière dépend fortement de la fréquence de ces ondes et de l’échelle de leurs longueurs d’onde au regard des propriétés du milieu considéré. Dans le cadre des applications d’imagerie ultrasonore qui nous importent, les échelles considérées pour les métaux sont généralement de l’ordre du millimètre (du dixième à plusieurs dizaines de millimètres). Or, selon les procédés de fabrication utilisés, les milieux métalliques qui sont souvent anisotropes peuvent également présenter une microstructure dont les hétérogénéités ont des dimensions caractéristiques du même ordre. Ainsi, les ondes ultrasonores se propageant à travers des métaux peuvent, dans certaines circonstances, être fortement affectées par les microstructures de ces derniers. Cela peut représenter une gêne pour certaines techniques ultrasonores (atténuation, bruit de structure) ou, au contraire, une opportunité pour estimer des propriétés locales du métal inspecté.
L’objectif général de la thèse proposée vise à approfondir la compréhension du lien entre microstructure et comportement des ondes ultrasonores pour de grandes classes de matériau en bénéficiant des savoirs combinés du LEM3 pour la génération de microstructure virtuelle et du CEA pour la simulation de la propagation d’ondes ultrasonores.
Le travail proposé combinera l’acquisition et l’analyse de données expérimentales (matériau et ultrasons), l’utilisation d’outils de simulation, et le traitement statistique de données. Cela permettra une analyse les comportements selon les classes de matériaux, voire la mise en place de procédures d’inversion permettant de caractériser une microstructure à partir d’un jeu de données ultrasonores. La combinaison de ces méthodes permettra une approche holistique contribuant à des avancées significatives dans le domaine.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The interaction of waves with matter strongly depends on the frequency of these waves and on the scale of their wavelengths relative to the properties of the medium under consideration. In the context of ultrasonic imaging applications that are of interest to us, the relevant length scales for metals are generally on the order of millimeters (from tenths to several tens of millimeters). Depending on the manufacturing processes used, metallic media—often anisotropic—may also exhibit microstructures with heterogeneities of similar characteristic dimensions. As a result, ultrasonic waves propagating through metals can, under certain circumstances, be significantly affected by these microstructures. This may hinder some ultrasonic techniques (due to attenuation or structural noise), or conversely, offer an opportunity to estimate local properties of the inspected metal.
The general objective of the proposed PhD thesis is to deepen the understanding of the relationship between microstructure and ultrasonic wave behavior for broad classes of materials, leveraging the combined expertise of LEM3 in virtual microstructure generation and CEA in ultrasonic wave propagation simulation.
The proposed work will combine the acquisition and analysis of experimental data (both material and ultrasonic), the use of simulation tools, and statistical data processing. This will enable an analysis of wave behavior across material classes, and possibly the development of inversion procedures to characterize a microstructure based on ultrasonic datasets. The combination of these methods will support a holistic approach, contributing to significant advancements in the field.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département d’Instrumentation Numérique
Service : Service de Simulation et Intelligence Artificielle
Laboratoire : Laboratoire de Simulation, Modélisation et Analyse
Date de début souhaitée : 01-09-2025
Ecole doctorale : Chimie Mécanique Matériaux Physique (C2MP)
Directeur de thèse : GERMAIN Lionel
Organisme : Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
Laboratoire : UMR 7239 CNRS – Université de Lorraine
L’objectif général de la thèse proposée vise à approfondir la compréhension du lien entre microstructure et comportement des ondes ultrasonores pour de grandes classes de matériau en bénéficiant des savoirs combinés du LEM3 pour la génération de microstructure virtuelle et du CEA pour la simulation de la propagation d’ondes ultrasonores.
Le travail proposé combinera l’acquisition et l’analyse de données expérimentales (matériau et ultrasons), l’utilisation d’outils de simulation, et le traitement statistique de données. Cela permettra une analyse les comportements selon les classes de matériaux, voire la mise en place de procédures d’inversion permettant de caractériser une microstructure à partir d’un jeu de données ultrasonores. La combinaison de ces méthodes permettra une approche holistique contribuant à des avancées significatives dans le domaine.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The interaction of waves with matter strongly depends on the frequency of these waves and on the scale of their wavelengths relative to the properties of the medium under consideration. In the context of ultrasonic imaging applications that are of interest to us, the relevant length scales for metals are generally on the order of millimeters (from tenths to several tens of millimeters). Depending on the manufacturing processes used, metallic media—often anisotropic—may also exhibit microstructures with heterogeneities of similar characteristic dimensions. As a result, ultrasonic waves propagating through metals can, under certain circumstances, be significantly affected by these microstructures. This may hinder some ultrasonic techniques (due to attenuation or structural noise), or conversely, offer an opportunity to estimate local properties of the inspected metal.
The general objective of the proposed PhD thesis is to deepen the understanding of the relationship between microstructure and ultrasonic wave behavior for broad classes of materials, leveraging the combined expertise of LEM3 in virtual microstructure generation and CEA in ultrasonic wave propagation simulation.
The proposed work will combine the acquisition and analysis of experimental data (both material and ultrasonic), the use of simulation tools, and statistical data processing. This will enable an analysis of wave behavior across material classes, and possibly the development of inversion procedures to characterize a microstructure based on ultrasonic datasets. The combination of these methods will support a holistic approach, contributing to significant advancements in the field.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département d’Instrumentation Numérique
Service : Service de Simulation et Intelligence Artificielle
Laboratoire : Laboratoire de Simulation, Modélisation et Analyse
Date de début souhaitée : 01-09-2025
Ecole doctorale : Chimie Mécanique Matériaux Physique (C2MP)
Directeur de thèse : GERMAIN Lionel
Organisme : Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
Laboratoire : UMR 7239 CNRS – Université de Lorraine
Nature du financement
Financement public/privé
Précisions sur le financement
Présentation établissement et labo d'accueil
CEA Université de Lorraine Laboratoire de Simulation, Modélisation et Analyse
Pôle fr : Direction de la Recherche Technologique
Pôle en : Technological Research
Département : Département d’Instrumentation Numérique
Service : Service de Simulation et Intelligence Artificielle
Profil du candidat
Master 2 mécanique, acoustique, ou matériaux
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Besoin d'informations sur l'ABG ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
Généthon
Tecknowmetrix
Aérocentre, Pôle d'excellence régional
Institut Sup'biotech de Paris
Laboratoire National de Métrologie et d'Essais - LNE
SUEZ
PhDOOC
Groupe AFNOR - Association française de normalisation
ADEME
MabDesign
ONERA - The French Aerospace Lab
MabDesign
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
ANRT
Nokia Bell Labs France
Ifremer
CESI
CASDEN
TotalEnergies