Approximation stochastique et apprentissage en ligne // Stochastic Approximation: Theory and Applications to Online Learning
ABG-132181
ADUM-66253 |
Sujet de Thèse | |
24/05/2025 |
Université Grenoble Alpes
Saint-Martin-d'Hères - Auvergne-Rhône-Alpes - France
Approximation stochastique et apprentissage en ligne // Stochastic Approximation: Theory and Applications to Online Learning
- Informatique
Apprentissage statistique, apprentissage par renforcement, Approximation stochastique, bandits
Stochastic approximation, online learning, reinforcement learning, policy gradient
Stochastic approximation, online learning, reinforcement learning, policy gradient
Description du sujet
(voir description en anglais)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Stochastic approximation (SA) is a widely used algorithmic paradigm for solving fixed-point equations or optimization problems when only noisy observations are available. Introduced in the 1950s by Robbins and Monro, SA remains central to many modern algorithmic approaches in statistics, optimization, and machine learning. Fundamentally, a stochastic approximation algorithm aims to generate a sequence of estimates $\theta_n$ that converges to a target $\theta^*$—typically a solution to a root-finding problem or a minimizer of an expected loss—based on noisy observations of gradient-like information. SA forms the theoretical backbone of several key algorithmic classes in machine learning, including stochastic gradient descent (SGD), temporal-difference learning, $Q$-learning, and policy gradient.
The primary objective of this thesis is to advance the theoretical understanding of stochastic approximation schemes, with a focus on characterizing the error between the iterates $\theta_n$ and their limiting point $\theta^*$—especially in the presence of \emph{multi-scale dynamics}
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Stochastic approximation (SA) is a widely used algorithmic paradigm for solving fixed-point equations or optimization problems when only noisy observations are available. Introduced in the 1950s by Robbins and Monro, SA remains central to many modern algorithmic approaches in statistics, optimization, and machine learning. Fundamentally, a stochastic approximation algorithm aims to generate a sequence of estimates $\theta_n$ that converges to a target $\theta^*$—typically a solution to a root-finding problem or a minimizer of an expected loss—based on noisy observations of gradient-like information. SA forms the theoretical backbone of several key algorithmic classes in machine learning, including stochastic gradient descent (SGD), temporal-difference learning, $Q$-learning, and policy gradient.
The primary objective of this thesis is to advance the theoretical understanding of stochastic approximation schemes, with a focus on characterizing the error between the iterates $\theta_n$ and their limiting point $\theta^*$—especially in the presence of \emph{multi-scale dynamics}
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Début de la thèse : 01/10/2025
Nature du financement
Précisions sur le financement
Concours allocations
Présentation établissement et labo d'accueil
Université Grenoble Alpes
Etablissement délivrant le doctorat
Université Grenoble Alpes
Ecole doctorale
217 MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Profil du candidat
Master en informatique ou mathématique appliqué.
Forte appétence pour l'apprentissage statistique.
Cours avancé de probabilité et de processus stochastique.
Master in applied mathematics or computer science. Good knowledge of applied probability and stochastic processes. Will to work on online learning and optimization.
Master in applied mathematics or computer science. Good knowledge of applied probability and stochastic processes. Will to work on online learning and optimization.
09/06/2025
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Besoin d'informations sur l'ABG ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
Aérocentre, Pôle d'excellence régional
Institut Sup'biotech de Paris
Laboratoire National de Métrologie et d'Essais - LNE
CASDEN
Généthon
PhDOOC
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
ADEME
Nokia Bell Labs France
TotalEnergies
SUEZ
MabDesign
MabDesign
Tecknowmetrix
ANRT
CESI
Ifremer
Groupe AFNOR - Association française de normalisation
ONERA - The French Aerospace Lab