Où docteurs et entreprises se rencontrent
Menu
Connexion

Approximation stochastique et apprentissage en ligne // Stochastic Approximation: Theory and Applications to Online Learning

ABG-132181
ADUM-66253
Sujet de Thèse
24/05/2025
Université Grenoble Alpes
Saint-Martin-d'Hères - Auvergne-Rhône-Alpes - France
Approximation stochastique et apprentissage en ligne // Stochastic Approximation: Theory and Applications to Online Learning
  • Informatique
Apprentissage statistique, apprentissage par renforcement, Approximation stochastique, bandits
Stochastic approximation, online learning, reinforcement learning, policy gradient

Description du sujet

(voir description en anglais)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Stochastic approximation (SA) is a widely used algorithmic paradigm for solving fixed-point equations or optimization problems when only noisy observations are available. Introduced in the 1950s by Robbins and Monro, SA remains central to many modern algorithmic approaches in statistics, optimization, and machine learning. Fundamentally, a stochastic approximation algorithm aims to generate a sequence of estimates $\theta_n$ that converges to a target $\theta^*$—typically a solution to a root-finding problem or a minimizer of an expected loss—based on noisy observations of gradient-like information. SA forms the theoretical backbone of several key algorithmic classes in machine learning, including stochastic gradient descent (SGD), temporal-difference learning, $Q$-learning, and policy gradient.

The primary objective of this thesis is to advance the theoretical understanding of stochastic approximation schemes, with a focus on characterizing the error between the iterates $\theta_n$ and their limiting point $\theta^*$—especially in the presence of \emph{multi-scale dynamics}
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Début de la thèse : 01/10/2025

Nature du financement

Précisions sur le financement

Concours allocations

Présentation établissement et labo d'accueil

Université Grenoble Alpes

Etablissement délivrant le doctorat

Université Grenoble Alpes

Ecole doctorale

217 MSTII - Mathématiques, Sciences et technologies de l'information, Informatique

Profil du candidat

Master en informatique ou mathématique appliqué. Forte appétence pour l'apprentissage statistique. Cours avancé de probabilité et de processus stochastique.
Master in applied mathematics or computer science. Good knowledge of applied probability and stochastic processes. Will to work on online learning and optimization.
09/06/2025
Partager via
Postuler
Fermer

Vous avez déjà un compte ?

Nouvel utilisateur ?