Courants de spin ultrarapides et oxydes ferroïques // Ultrafast spin currents and ferroic oxides
ABG-132663 | Sujet de Thèse | |
26/06/2025 | Financement public/privé |
CEA Paris-Saclay Laboratoire Nano-Magnétisme et Oxydes
Saclay
Courants de spin ultrarapides et oxydes ferroïques // Ultrafast spin currents and ferroic oxides
- Physique
Physique du solide, surfaces et interfaces / Physique de l’état condensé, chimie et nanosciences / Interactions rayonnement-matière / Physique de l’état condensé, chimie et nanosciences
Description du sujet
Cette thèse s’inscrit dans le domaine de la spintronique ultrarapide et de l’étude des courants de spin à des échelles de temps sub-picosecondes. Les courants de spin purs suscitent un intérêt croissant en raison de leur rôle central dans le développement de dispositifs spintroniques de nouvelle génération. Face à l’explosion de la consommation de données, les technologies de l’information et de la communication doivent désormais traiter des volumes toujours plus importants, à des vitesses accrues et avec une consommation énergétique minimale.
Dans ce contexte, la manipulation ultrarapide de l’information constitue un enjeu majeur. Les courants de spin purs présentent plusieurs avantages décisifs : en plus de se propager sans dissipation, ils peuvent aujourd’hui être générés, transmis et détectés à des échelles de temps de l’ordre de quelques centaines de femtosecondes. Cette avancée ouvre la voie à l’émergence de composants et dispositifs spintroniques ultrarapides, potentiellement opérationnels dans la gamme térahertz. L’objectif de ce projet de thèse est d’étudier les mécanismes fondamentaux impliqués dans la génération et la propagation des courants de spin purs aux échelles de temps picosecondes et sub-picosecondes, avec un intérêt particulier pour les oxydes ferroïques. Ces matériaux présentent une grande diversité de propriétés remarquables et ajustables, ce qui en fait des systèmes idéaux pour la fonctionnalisation des courants de spin ultrarapides et pour relever les défis sociétaux de demain.
Le cœur du travail de thèse consistera à mettre en œuvre des techniques d’optique et de magnéto-optique résolues en temps, afin de sonder la dynamique magnétique ultrarapide de couches minces épitaxiées d’oxydes ferromagnétiques et antiferromagnétiques. Les résultats attendus visent à lever plusieurs verrous scientifiques : d’une part, l’ajustabilité de la génération de courants de spin ultrarapides via la demi-métallicité de certains oxydes ferromagnétiques ; d’autre part, le contrôle de la propagation de l’information de spin à des fréquences térahertz dans les oxydes antiferromagnétiques.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
This PhD thesis lies at the intersection of ultrafast spintronics and the physics of spin currents on sub-picosecond timescales. Pure spin currents are currently attracting considerable attention due to their central role in the development of next-generation spintronic devices. As data consumption continues to grow exponentially, information and communication technologies must process increasingly large volumes at higher speeds, all while minimizing energy consumption. In this context, ultrafast information processing has become a major challenge.
Pure spin currents offer several decisive advantages: in addition to their dissipationless propagation, they can now be generated, transmitted, and detected on timescales of just a few hundred femtoseconds. This progress paves the way for the emergence of ultrafast spintronic components and devices operating in the terahertz range.
The aim of this thesis project is to investigate the fundamental mechanisms governing the generation and propagation of pure spin currents on picosecond and sub-picosecond timescales, with a particular focus on ferroic oxides. These materials exhibit a wide range of remarkable and tunable properties, making them ideal candidates for enabling ultrafast spin current functionalities and addressing the societal challenges of tomorrow.
The core of this thesis work will involve the implementation of time-resolved optical and magneto-optical techniques to probe the ultrafast magnetic dynamics in epitaxial thin films of ferromagnetic and antiferromagnetic oxides. The main expected outcomes include overcoming key bottlenecks: on one hand, the tunability of ultrafast spin current generation through the half-metallicity of selected ferromagnetic oxides; and on the other hand, the control of spin information propagation at terahertz frequencies in antiferromagnetic oxides.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service de Physique de l’Etat Condensé
Laboratoire : Laboratoire Nano-Magnétisme et Oxydes
Date de début souhaitée : 01-10-2025
Ecole doctorale : Physique en Île-de-France (EDPIF)
Directeur de thèse : Chauleau jean-yves
Organisme : CEA
Laboratoire : DRF/IRAMIS/SPEC/LNO
URL : https://iramis.cea.fr/spec/annuaire/?uidc=MzdISk2xsDACAA
URL : https://iramis.cea.fr/spec/lno/
Dans ce contexte, la manipulation ultrarapide de l’information constitue un enjeu majeur. Les courants de spin purs présentent plusieurs avantages décisifs : en plus de se propager sans dissipation, ils peuvent aujourd’hui être générés, transmis et détectés à des échelles de temps de l’ordre de quelques centaines de femtosecondes. Cette avancée ouvre la voie à l’émergence de composants et dispositifs spintroniques ultrarapides, potentiellement opérationnels dans la gamme térahertz. L’objectif de ce projet de thèse est d’étudier les mécanismes fondamentaux impliqués dans la génération et la propagation des courants de spin purs aux échelles de temps picosecondes et sub-picosecondes, avec un intérêt particulier pour les oxydes ferroïques. Ces matériaux présentent une grande diversité de propriétés remarquables et ajustables, ce qui en fait des systèmes idéaux pour la fonctionnalisation des courants de spin ultrarapides et pour relever les défis sociétaux de demain.
Le cœur du travail de thèse consistera à mettre en œuvre des techniques d’optique et de magnéto-optique résolues en temps, afin de sonder la dynamique magnétique ultrarapide de couches minces épitaxiées d’oxydes ferromagnétiques et antiferromagnétiques. Les résultats attendus visent à lever plusieurs verrous scientifiques : d’une part, l’ajustabilité de la génération de courants de spin ultrarapides via la demi-métallicité de certains oxydes ferromagnétiques ; d’autre part, le contrôle de la propagation de l’information de spin à des fréquences térahertz dans les oxydes antiferromagnétiques.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
This PhD thesis lies at the intersection of ultrafast spintronics and the physics of spin currents on sub-picosecond timescales. Pure spin currents are currently attracting considerable attention due to their central role in the development of next-generation spintronic devices. As data consumption continues to grow exponentially, information and communication technologies must process increasingly large volumes at higher speeds, all while minimizing energy consumption. In this context, ultrafast information processing has become a major challenge.
Pure spin currents offer several decisive advantages: in addition to their dissipationless propagation, they can now be generated, transmitted, and detected on timescales of just a few hundred femtoseconds. This progress paves the way for the emergence of ultrafast spintronic components and devices operating in the terahertz range.
The aim of this thesis project is to investigate the fundamental mechanisms governing the generation and propagation of pure spin currents on picosecond and sub-picosecond timescales, with a particular focus on ferroic oxides. These materials exhibit a wide range of remarkable and tunable properties, making them ideal candidates for enabling ultrafast spin current functionalities and addressing the societal challenges of tomorrow.
The core of this thesis work will involve the implementation of time-resolved optical and magneto-optical techniques to probe the ultrafast magnetic dynamics in epitaxial thin films of ferromagnetic and antiferromagnetic oxides. The main expected outcomes include overcoming key bottlenecks: on one hand, the tunability of ultrafast spin current generation through the half-metallicity of selected ferromagnetic oxides; and on the other hand, the control of spin information propagation at terahertz frequencies in antiferromagnetic oxides.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service de Physique de l’Etat Condensé
Laboratoire : Laboratoire Nano-Magnétisme et Oxydes
Date de début souhaitée : 01-10-2025
Ecole doctorale : Physique en Île-de-France (EDPIF)
Directeur de thèse : Chauleau jean-yves
Organisme : CEA
Laboratoire : DRF/IRAMIS/SPEC/LNO
URL : https://iramis.cea.fr/spec/annuaire/?uidc=MzdISk2xsDACAA
URL : https://iramis.cea.fr/spec/lno/
Nature du financement
Financement public/privé
Précisions sur le financement
Présentation établissement et labo d'accueil
CEA Paris-Saclay Laboratoire Nano-Magnétisme et Oxydes
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut rayonnement et matière de Saclay
Service : Service de Physique de l’Etat Condensé
Profil du candidat
Master en Physique
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Besoin d'informations sur l'ABG ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
Groupe AFNOR - Association française de normalisation
Nokia Bell Labs France
Généthon
Ifremer
CESI
CASDEN
TotalEnergies
ADEME
SUEZ
Aérocentre, Pôle d'excellence régional
Laboratoire National de Métrologie et d'Essais - LNE
MabDesign
ONERA - The French Aerospace Lab
PhDOOC
Institut Sup'biotech de Paris
Tecknowmetrix
ANRT
MabDesign
-
EmploiRef. 132742Genève, SuisseEPSU
Professeur de Biologie UP à Genève
Expertises scientifiques :Biologie - Biochimie - Chimie
Niveau d’expérience :Confirmé
-
EmploiRef. 132696Montreal, CanadaMcGill University
Post-doctoral position in medicinal chemistry
Expertises scientifiques :Chimie - Biochimie
Niveau d’expérience :Junior