Méga-analyse cosmologique multi-sonde du relevé DESI: inférence bayésienne standard et au niveau du champ // Multi-Probe Cosmological Mega-Analysis of the DESI Survey: Standard and Field-Level Bayesian Inference
ABG-133724 | Sujet de Thèse | |
08/10/2025 | Financement public/privé |
CEA Paris-Saclay Groupe Cosmologie (GCOSMO)
Saclay
Méga-analyse cosmologique multi-sonde du relevé DESI: inférence bayésienne standard et au niveau du champ // Multi-Probe Cosmological Mega-Analysis of the DESI Survey: Standard and Field-Level Bayesian Inference
- Terre, univers, espace
- Physique
Astrophysique / Physique corpusculaire et cosmos / Simulation numérique / Défis technologiques
Description du sujet
Les grandes structures de l’Univers (LSS) sont sondées par plusieurs observables : distribution des galaxies, lentillage faible des galaxies et du fond diffus cosmologique (CMB). Chacune permet de tester la gravité à grande échelle et l’énergie noire, mais leur analyse jointe assure le meilleur contrôle des paramètres de nuisance et fournit les contraintes cosmologiques les plus précises.
Le relevé spectroscopique DESI cartographie la distribution 3D de galaxies. À la fin de son relevé nominal de 5 ans cette année, il aura observé 40 millions de galaxies et quasars (dix fois plus que les relevés précédents) sur un tiers du ciel, jusqu’à un décalage spectral de z = 4.2. En combinant ses données avec celles du CMB et des supernovae, la collaboration a mis en évidence une éventuelle déviation de l’énergie noire par rapport à la constante cosmologique.
Pour tirer pleinement parti de ces données, DESI a lancé une "méga-analyse" combinant galaxies, lentillage de galaxies (Euclid, UNIONS, DES, HSC, KIDS) et du CMB (Planck, ACT, SPT), visant à produire les contraintes les plus précises jamais obtenues sur l’énergie noire et la gravité. L’étudiant jouera un rôle clé dans le développement et la mise en oeuvre de cette chaîne d’analyse multi-sonde.
L’analyse standard compresse les observations en spectre de puissance pour l’inférence cosmologique, mais cette approche reste sous-optimale. L’étudiant développera une alternative, dite analyse au niveau du champ, qui consiste à ajuster directement le champ de densité et de lentillage observé, simulé à partir des conditions initiales de l’Univers. Ceci constitue un problème d’inférence bayésienne en très haute dimension, qui sera traité à l’aide d’échantillonneurs récents basés sur le gradient et de bibliothèques GPU avec différentiation automatique. Cette méthode de pointe sera validée en parallèle avec l’approche standard, ouvrant la voie à une exploitation maximale des données DESI.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The large-scale structure (LSS) of the Universe is probed through multiple observables: the distribution of galaxies, weak lensing of galaxies, and the cosmic microwave background (CMB). Each probe tests gravity on large scales and the effects of dark energy, but their joint analysis provides the best control over nuisance parameters and yields the most precise cosmological constraints.
The DESI spectroscopic survey maps the 3D distribution of galaxies. By the end of its 5-year nominal survey this year, it will have observed 40 million galaxies and quasars — ten times more than previous surveys — over one third of the sky, up to a redshift of z = 4.2. Combining DESI data with CMB and supernova measurements, the collaboration has revealed a potential deviation of dark energy from a cosmological constant.
To fully exploit these data, DESI has launched a “mega-analysis” combining galaxies, weak lensing of galaxies (Euclid, UNIONS, DES, HSC, KIDS) and the CMB (Planck, ACT, SPT), aiming to deliver the most precise constraints ever obtained on dark energy and gravity. The student will play a key role in developing and implementing this multi-probe analysis pipeline.
The standard analysis compresses observations into a power spectrum for cosmological inference, but this approach remains suboptimal. The student will develop an alternative, called field-level analysis, which directly fits the observed density and lensing field, simulated from the initial conditions of the Universe. This constitutes a very high-dimensional Bayesian inference problem, which will be tackled using recent gradient-based samplers and GPU libraries with automatic differentiation. This state-of-the-art method will be validated alongside the standard approach, paving the way for a maximal exploitation of DESI data.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut de recherche sur les lois fondamentales de l’univers
Service : Service de Physique des Particules
Laboratoire : Groupe Cosmologie (GCOSMO)
Date de début souhaitée : 01-10-2026
Ecole doctorale : PHENIICS (PHENIICS)
Directeur de thèse : YECHE Christophe
Organisme : CEA
Laboratoire : DRF/IRFU/DPHP/GCOSMO
Le relevé spectroscopique DESI cartographie la distribution 3D de galaxies. À la fin de son relevé nominal de 5 ans cette année, il aura observé 40 millions de galaxies et quasars (dix fois plus que les relevés précédents) sur un tiers du ciel, jusqu’à un décalage spectral de z = 4.2. En combinant ses données avec celles du CMB et des supernovae, la collaboration a mis en évidence une éventuelle déviation de l’énergie noire par rapport à la constante cosmologique.
Pour tirer pleinement parti de ces données, DESI a lancé une "méga-analyse" combinant galaxies, lentillage de galaxies (Euclid, UNIONS, DES, HSC, KIDS) et du CMB (Planck, ACT, SPT), visant à produire les contraintes les plus précises jamais obtenues sur l’énergie noire et la gravité. L’étudiant jouera un rôle clé dans le développement et la mise en oeuvre de cette chaîne d’analyse multi-sonde.
L’analyse standard compresse les observations en spectre de puissance pour l’inférence cosmologique, mais cette approche reste sous-optimale. L’étudiant développera une alternative, dite analyse au niveau du champ, qui consiste à ajuster directement le champ de densité et de lentillage observé, simulé à partir des conditions initiales de l’Univers. Ceci constitue un problème d’inférence bayésienne en très haute dimension, qui sera traité à l’aide d’échantillonneurs récents basés sur le gradient et de bibliothèques GPU avec différentiation automatique. Cette méthode de pointe sera validée en parallèle avec l’approche standard, ouvrant la voie à une exploitation maximale des données DESI.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The large-scale structure (LSS) of the Universe is probed through multiple observables: the distribution of galaxies, weak lensing of galaxies, and the cosmic microwave background (CMB). Each probe tests gravity on large scales and the effects of dark energy, but their joint analysis provides the best control over nuisance parameters and yields the most precise cosmological constraints.
The DESI spectroscopic survey maps the 3D distribution of galaxies. By the end of its 5-year nominal survey this year, it will have observed 40 million galaxies and quasars — ten times more than previous surveys — over one third of the sky, up to a redshift of z = 4.2. Combining DESI data with CMB and supernova measurements, the collaboration has revealed a potential deviation of dark energy from a cosmological constant.
To fully exploit these data, DESI has launched a “mega-analysis” combining galaxies, weak lensing of galaxies (Euclid, UNIONS, DES, HSC, KIDS) and the CMB (Planck, ACT, SPT), aiming to deliver the most precise constraints ever obtained on dark energy and gravity. The student will play a key role in developing and implementing this multi-probe analysis pipeline.
The standard analysis compresses observations into a power spectrum for cosmological inference, but this approach remains suboptimal. The student will develop an alternative, called field-level analysis, which directly fits the observed density and lensing field, simulated from the initial conditions of the Universe. This constitutes a very high-dimensional Bayesian inference problem, which will be tackled using recent gradient-based samplers and GPU libraries with automatic differentiation. This state-of-the-art method will be validated alongside the standard approach, paving the way for a maximal exploitation of DESI data.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut de recherche sur les lois fondamentales de l’univers
Service : Service de Physique des Particules
Laboratoire : Groupe Cosmologie (GCOSMO)
Date de début souhaitée : 01-10-2026
Ecole doctorale : PHENIICS (PHENIICS)
Directeur de thèse : YECHE Christophe
Organisme : CEA
Laboratoire : DRF/IRFU/DPHP/GCOSMO
Nature du financement
Financement public/privé
Précisions sur le financement
Présentation établissement et labo d'accueil
CEA Paris-Saclay Groupe Cosmologie (GCOSMO)
Pôle fr : Direction de la Recherche Fondamentale
Département : Institut de recherche sur les lois fondamentales de l’univers
Service : Service de Physique des Particules
Profil du candidat
analyse statistique, apprentissage artificiel et programmation, physique fondamentale, cosmologie
Postuler
Fermer
Vous avez déjà un compte ?
Nouvel utilisateur ?
Besoin d'informations sur l'ABG ?
Vous souhaitez recevoir nos infolettres ?
Découvrez nos adhérents
Institut Sup'biotech de Paris
ADEME
MabDesign
Laboratoire National de Métrologie et d'Essais - LNE
Tecknowmetrix
Nokia Bell Labs France
CESI
SUEZ
Ifremer
ONERA - The French Aerospace Lab
Aérocentre, Pôle d'excellence régional
ANRT
ASNR - Autorité de sûreté nucléaire et de radioprotection - Siège
CASDEN
Groupe AFNOR - Association française de normalisation
Généthon
TotalEnergies
MabDesign
PhDOOC